Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Nanoscale 3D Printing of a Lithium Ion Battery: Rethinking the Fabrication Concept for a Revolution in Energy Storage

Project description

A 3D boost for energy storage

A growing list of portable applications – from electric vehicles and robotic systems to mobile electronic devices – require electricity. However, the storage of electrical energy remains a challenge. Rechargeable lithium-ion battery technologies remain limited due to their planar two-dimensional design, which restrains performance in terms of output power and charging speed. The ERC-funded NANO-3D-LION project will introduce a paradigm shift in battery engineering. It will develop and employ advanced nanoscale 3D printing techniques to fabricate active battery materials with ultrasmall structural features. Overall, the project expects to establish an engineering approach with the potential to revolutionise the future landscape in research and industry related to portable electronic devices and electric vehicles.

Objective

One of the greatest technological challenges of today is efficient storage of electrical energy for portable applications, including electric vehicles, mobile electronic devices, and robotic systems. Further progress in these areas, however, is often hindered by the limitations of current rechargeable lithium ion battery technologies, which are among the most common power sources for these systems. Despite tremendous progress in electrode materials, the intrinsic drawbacks of current batteries are related to their planar two-dimensional design, which restrains the performance in terms of output power and charging speed. NANO-3D-LION is aimed to make a breakthrough in these major battery characteristics by a paradigm shift in battery engineering: the goal is to develop and employ advanced nanoscale 3D printing techniques to fabricate active battery materials with ultrasmall structural features, which will provide almost a thousand-fold increase in the surface area of the battery enabled by nanoscale spacing between its electrodes without compromising the battery capacity. To reach this, high-aspect ratio metal features will be fabricated and further converted into the active material of the cathode and the anode. This will enable unprecedented level of control of the battery architecture, allowing groundbreaking improvement of the key battery performance characteristics, including higher output power and charging times of only several seconds. NANO-3D-LION will establish a unique engineering approach with a potential to completely change the future landscape in research and industry related to portable electronic devices and electric vehicles and will also benefit many technologies beyond battery research, where nanoscale 3D printing opens new unparalleled capacity, therefore ensuring its broad scientific, economical and societal impact.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

ERC-STG - Starting Grant

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) ERC-2020-STG

See all projects funded under this call

Host institution

CARL VON OSSIETZKY UNIVERSITAET OLDENBURG
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 2 255 055,00
Address
AMMERLAENDER HEERSTRASSE 114-118
26129 Oldenburg
Germany

See on map

Region
Niedersachsen Weser-Ems Oldenburg (Oldenburg), Kreisfreie Stadt
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 2 255 055,00

Beneficiaries (1)

My booklet 0 0