Skip to main content
European Commission logo
italiano italiano
CORDIS - Risultati della ricerca dell’UE
CORDIS

Unraveling the Physics of Light at Scale

Descrizione del progetto

Cominciamo a vedere la luce in settori che spaziano dalla scienza ambientale alla biologia

I fotoni sono piccole sonde quantistiche del mondo attorno a noi. I modi in cui questi pacchetti di luce vengono riflessi, rifratti o assorbiti dai materiali nei loro percorsi possono essere impiegati per identificare i materiali stessi. Tuttavia, per «filtrare» tutti gli altri illimitati elementi nell’immagine letterale e metaforica, dobbiamo sapere che cosa sono tali elementi e in che modo modificano la luce. Questo cosiddetto problema inverso (lavorare a ritroso da una misurazione indiretta a una misurazione di interesse dalla relazione nota tra le due) è abbastanza complesso, eppure fondamentale, per settori che spaziano dalle immagini satellitari e dalla scienza climatica alla microscopia dei campioni biologici. Il progetto UNRAVEL, finanziato dall’UE, sta sviluppando metodologie di grafica realizzata al computer che integrino quei ponti nascosti tra i parametri illimitati e la luce per consentire agli scienziati in praticamente qualsiasi campo di analizzare immagini complesse ed estrarre i parametri di interesse.

Obiettivo

Earth climate research crucially depends on measurements of the atmospheric distribution of CO2, which is largely obtained using satellites. But satellites cannot directly measure CO2—they capture photographs at different wavelengths that must be mathematically processed to obtain this information. Current methods for solving this inverse problem are unaware of many aspects of the images including topography, cloud shape, shadowing, etc. The UN Intergovernmental Panel on Climate Change (IPCC) has identified the resulting errors as the main cause of discrepancies between different climate sensitivity models.

This proposal in the area of computer graphics introduces methods for inverting the physics of light at unprecedented scales that will address these inaccuracies. However, the scope of our contribution extends far beyond climate modeling: it will have a revolutionary impact on all scientific disciplines that involve the analysis of images, including biology, computer vision, architecture, and many others.

In this project,

- we will establish the first framework for inverting light simulations with billions of parameters.

To demonstrate its generality, and to realize the impact of this framework, we will specialize it to three areas:

- we will develop the first invertible atmospheric optics simulator for earth climate monitoring that accounts for 3D structures, addressing severe inaccuracies of current methods.

- we will create an invertible virtual microscope that will open the door to fundamentally new reconstruction techniques in the area of biology.

- we will design architectural light simulations that are able to adapt buildings so that they make ideal use of naturally available daylight.

To achieve these goals, we must unravel the messy physics of light to either reveal or control the properties of visible and invisible objects. Our approach will solve this impossible-seeming problem at large scales with substantial impact across disciplines.

Meccanismo di finanziamento

ERC-STG - Starting Grant

Istituzione ospitante

ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE
Contribution nette de l'UE
€ 1 496 955,00
Indirizzo
BATIMENT CE 3316 STATION 1
1015 Lausanne
Svizzera

Mostra sulla mappa

Regione
Schweiz/Suisse/Svizzera Région lémanique Vaud
Tipo di attività
Higher or Secondary Education Establishments
Collegamenti
Costo totale
€ 1 496 955,00

Beneficiari (1)