Project description
Improving our understanding of the evolutionary dynamics of pathogens
Understanding the rapid adaptation mechanisms of infectious pathogens is key to designing better management strategies. However, existing models often fail to explain these dynamics as the evolutionary processes causing these changes are largely unknown. The EU-funded EvoComBac project aims to address this challenge of evolutionary biology in the bacterial species Escherichia coli. To that end, it will develop a prospective cohort of 200 longitudinally followed healthy volunteers – the largest of its kind – and collect data to analyse and describe the ecology of Escherichia coli from within-host to population level. Ultimately, the project's work will lead to better predictions of evolutionary dynamics and better management policies for infectious pathogens.
Objective
Understanding the rapid adaptation of infectious pathogens is crucial to design better management policies and anticipate future changes. Yet, existing models often fail to explain these dynamics. I will address this major challenge of evolutionary biology in the bacterial species Escherichia coli. E. coli is a commensal of the human gut and an opportunistic pathogen causing infections responsible for more than a million deaths worldwide per year. E. coli has rapidly evolved over the last four decades. From the 1980s, starting from an almost fully sensitive population, multiple antibiotic resistances have emerged and stabilised at an intermediate frequency. Concomitantly, virulence, the propensity to cause infections, increased. The evolutionary processes causing these changes are largely unknown. To elucidate the drivers of the evolution of commensal E. coli, I will develop a prospective cohort of 200 longitudinally followed healthy volunteersthe largest cohort of its kind. We will analyse these data in the light of an integrative statistical and mathematical framework describing the ecology of E. coli from the within-host to the population level. These models will generate testable predictions on the evolution of genomic variants determining virulence, resistance, and colonisation ability. These predictions will be validated on an exceptional existing dataset composed of 1000 bacterial genomes sampled from healthy human hosts from 1980 to 2025 encompassing around 100,000 generations of bacterial evolution. This original interdisciplinary framework draws from epidemiology, evolutionary biology and genomics for a better understanding of the evolution of bacteria. This project is a step towards better predictions of evolutionary dynamics and better stewardship policies for infectious pathogens.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- medical and health sciences health sciences public health epidemiology
- natural sciences biological sciences ecology
- natural sciences biological sciences genetics genomes
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
ERC-STG - Starting Grant
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2020-STG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
75794 PARIS
France
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.