Skip to main content
Weiter zur Homepage der Europäischen Kommission (öffnet in neuem Fenster)
Deutsch Deutsch
CORDIS - Forschungsergebnisse der EU
CORDIS

Physics-constrained adaptive learning for multi-physics optimization

Projektbeschreibung

Physikbewusstes maschinelles Lernen für Erkenntnisse über die Strömungsmechanik

Die Fähigkeit von Modellen der Strömungsmechanik, die Entwicklungen eines Stroms vorauszusagen, beruht sowohl auf Prinzipien der Physik als auch auf empirischen Ansätzen. Auf der einen Seite sind physikalische Grundsätze (wie die Energieerhaltungssätze) extrapolativ – sie können Vorhersagen über Phänomene treffen, die noch nicht beobachtet wurden. Auf der anderen Seite stellt eine empirische Modellierung Korrelationsfunktionen innerhalb der Daten bereit. Künstliche Intelligenz und maschinelles Lernen eignen sich hervorragend für empirische Modellierung. Das EU-finanzierte Projekt PhyCo wird Prinzipien der Physik und empirische Modellierungsverfahren in einem einheitlichen Ansatz vereinen: den Gesetzen der Physik gehorchende, datengetriebene Verfahren für eine Multiphysik-Optimierung. Die Lösungen auf der Grundlage maschinellen Lernens werden keine Einschränkungen der Physik verletzen. Das rechnergestützte Rahmenwerk wird angewandt, um hochauflösende Strömungsbilder aus Daten mit geringer Auflösung zu gewinnen; die Emissionen von Flugzeugmotoren dank reagierenden Strömen auf Wasserstoffbasis zu minimieren und die emissionslose Energieernte aus Oszillationen von Fluidstrukturen zu maximieren.

Ziel

About a hundred trillion bytes of data has been created in the world while reading this sentence. Central to big data is machine learning, which is an automated way of transforming information into empirical knowledge. Machine learning techniques have been applied to some fluid mechanics problems with success, but there are still three big open questions: Do machine learning algorithms scale to engineering configurations? (Are they robust?); Can we gain physical insight into the solutions? (Are they interpretable?); Can we extrapolate knowledge to other configurations, such as multi-physics problems? (Are they generalizable?).

Fluid mechanics modelling has been historically enabled by both empirical approaches and physical principles. Machine learning models may not be interpretable and robust, but they excel at empirical modelling. On the other hand, physical principles are governed by equations that do not adaptively change, but they are interpretable and robust. This project will combine physical principles and empirical modelling into a unified approach: physics-constrained adaptive learning for multi-physics optimization of unsteady, unpredictable and uncertain flows. The learned solutions will not violate physical constraints.

The technical objectives are to combine physical principles with machine learning; design adaptive multi-physics models by on-the-fly data assimilation; optimize turbulent flows; quantify the uncertainty; and develop a code that wraps around existing simulation software and experiments. This framework will be applied to maximize energy harvesting from aeroelastic systems to produce clean energy; optimize stable aeroengines with low emissions; and reconstruct high-resolution flow fields from low-resolution experimental measurements. We will rigorously interlace chaos theory, Bayesian inference and artificial intelligence. This project will benefit industries that work with multi-physics flows and artificial intelligence companies.

Wissenschaftliches Gebiet (EuroSciVoc)

CORDIS klassifiziert Projekte mit EuroSciVoc, einer mehrsprachigen Taxonomie der Wissenschaftsbereiche, durch einen halbautomatischen Prozess, der auf Verfahren der Verarbeitung natürlicher Sprache beruht. Siehe: Das European Science Vocabulary.

Sie müssen sich anmelden oder registrieren, um diese Funktion zu nutzen

Programm/Programme

Mehrjährige Finanzierungsprogramme, in denen die Prioritäten der EU für Forschung und Innovation festgelegt sind.

Thema/Themen

Aufforderungen zur Einreichung von Vorschlägen sind nach Themen gegliedert. Ein Thema definiert einen bestimmten Bereich oder ein Gebiet, zu dem Vorschläge eingereicht werden können. Die Beschreibung eines Themas umfasst seinen spezifischen Umfang und die erwarteten Auswirkungen des finanzierten Projekts.

Finanzierungsplan

Finanzierungsregelung (oder „Art der Maßnahme“) innerhalb eines Programms mit gemeinsamen Merkmalen. Sieht folgendes vor: den Umfang der finanzierten Maßnahmen, den Erstattungssatz, spezifische Bewertungskriterien für die Finanzierung und die Verwendung vereinfachter Kostenformen wie Pauschalbeträge.

ERC-STG - Starting Grant

Alle im Rahmen dieses Finanzierungsinstruments finanzierten Projekte anzeigen

Aufforderung zur Vorschlagseinreichung

Verfahren zur Aufforderung zur Einreichung von Projektvorschlägen mit dem Ziel, eine EU-Finanzierung zu erhalten.

(öffnet in neuem Fenster) ERC-2020-STG

Alle im Rahmen dieser Aufforderung zur Einreichung von Vorschlägen finanzierten Projekte anzeigen

Gastgebende Einrichtung

POLITECNICO DI TORINO
Netto-EU-Beitrag

Finanzieller Nettobeitrag der EU. Der Geldbetrag, den der Beteiligte erhält, abzüglich des EU-Beitrags an mit ihm verbundene Dritte. Berücksichtigt die Aufteilung des EU-Finanzbeitrags zwischen den direkten Begünstigten des Projekts und anderen Arten von Beteiligten, wie z. B. Dritten.

€ 166 460,50
Adresse
CORSO DUCA DEGLI ABRUZZI 24
10129 Torino
Italien

Auf der Karte ansehen

Region
Nord-Ovest Piemonte Torino
Aktivitätstyp
Higher or Secondary Education Establishments
Links
Gesamtkosten

Die Gesamtkosten, die dieser Organisation durch die Beteiligung am Projekt entstanden sind, einschließlich der direkten und indirekten Kosten. Dieser Betrag ist Teil des Gesamtbudgets des Projekts.

€ 166 460,50

Begünstigte (3)

Mein Booklet 0 0