Project description
Epigenetic control of gene expression switching in malaria parasites
The malaria-causing parasite Plasmodium falciparum has developed clonally variant gene expression to control essential biological processes during its persistent blood-stage infection of the human host. Heritable epigenetic silencing ensures the limited expression of only a subset of the genes at any time. Switching the expression of individual clonally variant genes enables the parasite to rapidly adapt to changes in its environment, evade the immune system and switch to the development of mosquito-transmissible gametocyte stages. The EU-funded MALSWITCH project aims to combine the proprietary method of conditional expression switching of endogenous genes in the parasite with CRISPR/Cas-derived methodology and proximity-based labelling approaches to identify and characterise the molecular mechanisms controlling epigenetic gene expression switching.
Objective
The malaria-causing parasite Plasmodium falciparum has evolved a strategy of clonally variant gene expression to control essential biological processes like antigenic variation and sexual commitment during its persistent blood-stage infection of the human host. Heritable epigenetic silencing of the underlying specialized gene families ensures the limited expression of only a subset of these genes at any time. Switching the expression of individual clonally variant genes enables the parasite to rapidly adapt to changes in its environment, evade the immune system and switch its cell cycle to the development of mosquito-transmissible gametocyte stages. Expression switching of these clonally variant genes therefore represents a key strategy for parasite survival and underlies the evolutionary success of this deadly pathogen. Despite decades of research, the molecular mechanisms coordinating this adaptive gene expression switching are not understood. In my recent research, I developed a unique experimental tool, which for the first time allows the conditional expression switching of endogenous genes in the parasite. I will combine this system with novel CRISPR/Cas derived methodology and proximity-based labelling approaches to deliver the first systematic identification and characterization of the molecular mechanisms controlling epigenetic gene expression switching. The experiments outlined in the proposal will reveal the core of the molecular machinery underlying this fundamental process and elucidate regulatory mechanisms that allow the parasite to translate environmental signals into adaptive switching of clonally variant genes. This will transform our understanding of the molecular mechanisms driving adaptation of this deadly parasite and in the long run might contribute to the design of intervention strategies that P. falciparum is unable to adapt to.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
ERC-STG - Starting Grant
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2020-STG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
72074 Tuebingen
Germany
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.