Skip to main content
Ir a la página de inicio de la Comisión Europea (se abrirá en una nueva ventana)
español español
CORDIS - Resultados de investigaciones de la UE
CORDIS

Incorporating Demographic Factors into Natural Language Processing Models

Descripción del proyecto

Inclusión de la demografía en la tecnología lingüística

Incorporar factores demográficos en la tecnología lingüística es difícil. Sin embargo, este es el objetivo del proyecto financiado con fondos europeos INTEGRATOR, que desarrolla nuevos conjuntos de datos, teorías y algoritmos a fin de incorporar factores demográficos en la tecnología lingüística. Dicha incorporación mejorará el rendimiento de las herramientas existentes para todos los usuarios, reducirá los sesgos demográficos y fomentará nuevas aplicaciones. La actual tecnología de procesamiento del lenguaje natural no tiene en cuenta la demografía, tanto en la comprensión del lenguaje (p. ej., el análisis de los sentimientos) como en su generación. Esta falta de consideración nos impide alcanzar un rendimiento parecido al de los humanos, limita futuras aplicaciones posibles e introduce sesgos contra grupos demográficos infrarrepresentados.

Objetivo

The goal of INTEGRATOR is to develop novel data sets, theories, and algorithms to incorporate demographic factors into language technology. This will improve performance of existing tools for all users, reduce demographic bias, and enable completely new applications.
Language reflects demographic factors like our age, gender, etc. People actively use this information to make inferences, but current language technology (NLP) fails to account for demographics, both in language understanding (e.g. sentiment analysis) and generation (e.g. chatbots). This failure prevents us from reaching human-like performance, limits possible future applications, and introduces systematic bias against underrepresented demographic groups.
Solving demographic bias is one of the greatest challenges for current language technology. Failing to do so will limit the field and harm public trust in it. Bias in AI systems recently emerged as a severe problem for privacy, fairness, and ethics of AI. It is especially prevalent in language technology, due to language's rich demographic information. Since NLP is ubiquitous (translation, search, personal assistants, etc.), demographically biased models creates uneven access to vital technology.
Despite increased interest in demographics in NLP, there are no concerted efforts to integrate it: no theory, data sets, or algorithmic solutions. INTEGRATOR will address these by identifying which demographic factors affect NLP systems, devising a bias taxonomy and metrics, and creating new data. These will enable us to use transfer and reinforcement learning methods to build demographically aware input representations and systems that incorporate demographics to improve performance and reduce bias.
Demographically aware NLP will lead to high-performing, fair systems for text analysis and generation. This ground-breaking research advances our understanding of NLP, algorithmic fairness, and bias in AI, and creates new research resources and avenues.

Palabras clave

Palabras clave del proyecto indicadas por el coordinador del proyecto. No confundir con la taxonomía EuroSciVoc (Ámbito científico).

Programa(s)

Programas de financiación plurianuales que definen las prioridades de la UE en materia de investigación e innovación.

Tema(s)

Las convocatorias de propuestas se dividen en temas. Un tema define una materia o área específica para la que los solicitantes pueden presentar propuestas. La descripción de un tema comprende su alcance específico y la repercusión prevista del proyecto financiado.

Régimen de financiación

Régimen de financiación (o «Tipo de acción») dentro de un programa con características comunes. Especifica: el alcance de lo que se financia; el porcentaje de reembolso; los criterios específicos de evaluación para optar a la financiación; y el uso de formas simplificadas de costes como los importes a tanto alzado.

ERC-STG - Starting Grant

Ver todos los proyectos financiados en el marco de este régimen de financiación

Convocatoria de propuestas

Procedimiento para invitar a los solicitantes a presentar propuestas de proyectos con el objetivo de obtener financiación de la UE.

(se abrirá en una nueva ventana) ERC-2020-STG

Ver todos los proyectos financiados en el marco de esta convocatoria

Institución de acogida

UNIVERSITA COMMERCIALE LUIGI BOCCONI
Aportación neta de la UEn

Aportación financiera neta de la UE. Es la suma de dinero que recibe el participante, deducida la aportación de la UE a su tercero vinculado. Considera la distribución de la aportación financiera de la UE entre los beneficiarios directos del proyecto y otros tipos de participantes, como los terceros participantes.

€ 1 498 937,00
Coste total

Los costes totales en que ha incurrido esta organización para participar en el proyecto, incluidos los costes directos e indirectos. Este importe es un subconjunto del presupuesto total del proyecto.

€ 1 498 937,00

Beneficiarios (1)

Mi folleto 0 0