Project description
Insight into cell fate regulation
Molecular interactions shape cell behaviour and determine biological functions. Advances in single-cell technologies offer the opportunity to probe these processes with the resolution of single molecules. Scientists of the EU-funded AHH-OMICS project are interested in how these technologies can be used to understand self-organisation processes underlying the behaviour of cells. They will combine single-cell technologies with tools from theoretical physics to study epigenetics and gene expression processes occurring during cellular differentiation, reprogramming and ageing. Their work will overcome important conceptual limitations in an emerging technology in biology.
Objective
Biological systems rely on an influx of energy to build and maintain complex spatio-temporal structures. A striking example of this is the self-organisation of cells into tissues, which relies on an interplay of molecular programs and tissue-level feedback. The mechanistic basis underlying these processes is poorly understood. The recent advent of single-cell sequencing technologies for the first time gives the opportunity to probe these processes with unprecedented molecular resolution in vivo. Biological function, however, relies on collective processes on the cellular scale which emerge from many interactions on the microscopic scale. But what can we learn about such collective processes from detailed empirical information on the molecular scale? Concepts from non-equilibrium statistical physics provide a powerful framework to understand collective processes underlying the self-organisation of cells. In the proposed research endeavour, we will combine the possibilities of novel single-cell technologies with methods from non-equilibrium statistical physics to understand collective processes regulating cellular behaviour. Using this conceptually new approach, we will 1) unveil collective epigenetic processes during differentiation, reprogramming and ageing, 2) determine how the interplay between different layers of regulation leads to the emergence of mesoscopic spatio-temporal structures in vivo, and 3) understand universal fluctuations in gene expression to unveil mechanistic principles of cellular decisions. Our theoretical work will be challenged by single-cell sequencing experiments performed by our collaborators. We will overcome important conceptual limitations in an emerging technology in biology and pioneer the application of methods from non-equilibrium statistical physics to single-cell genomics. At the same time, we take an interdisciplinary approach to tackle questions at the frontier of non-equilibrium physics.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
ERC-STG - Starting Grant
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2020-STG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
80539 MUNCHEN
Germany
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.