European Commission logo
English English
CORDIS - EU research results
CORDIS

The atomic-layer 3D plotter

Project description

Improved technology for 3D nanoprinting

Nanolithography comprises a growing field of techniques within nanotechnology concerning the engineering of structures on a nanometre scale. The field is of particular interest to computer engineering, providing experts the opportunity to create super-high density microprocessors and memory chips. Among the biggest market challenges in the field is reducing costs and time spent on the prototyping and fabrication process as well as being able to utilise a broader range of materials. The EU-funded ATOPLOT project aims to address those challenges and improve the capabilities of the ATLANT3D Nanofabricator for 3D nanoprinting technology.

Objective

Micro- and nanofabrication represents important mainstream manufacturing processes across several industrial fast-growing sectors, such as MEMS & sensors, optics & photonics, RF devices, semiconductors, printed electronics, which in turn are significant building blocks in e.g. advanced healthtech, biotech, cleantech, and electronics. Yet, to improve the market stance, the micro-/nanofabrication sector is looking for solutions able to reduce costs and time spent on the prototyping and fabrication process, as well as more flexible, efficient and sustainable solutions, able to utilize a broader range of materials permitting custom-built components. While the most promising technology to address these challenges is found in the 3D printing market, there are currently no available 3D printers or technologies with the capabilities to address these challenges. To this purpose, ATL (DK) has developed the ATLANT3D Nanofabricator, a 3D nanoprinting technology with improved resolution and flexibility, while costing less 27% than the closest 3D printing competitor, and up to 92% less than conventional competitors. It will enable rapid prototyping, shorter time to market and lower barriers for companies and researchers already working in this field, as well as those for whom micro-/nanoprototyping is currently not feasible.

The overall aim of ATOPLOT project is to mature, extend capabilities and prove full functionality and benefits of the ATLANT3D Nanofabricator. ATOPLOT brings together a consortium of three SMEs (ATL, FEM, SEMPA) and two academic partners (FAU, SAS) – in unison representing a technical side specialized in nanofabrication, and a business side with experience in business development and B2B sales & marketing. The consortium expects a successful market introduction of the Nanofabricator within the next 3 years, tapping into a large business opportunity, from which the partners stand to capture more than 400M€ as profit and directly creating 165+ new jobs.

Coordinator

FRIEDRICH-ALEXANDER-UNIVERSITAET ERLANGEN-NUERNBERG
Net EU contribution
€ 814 946,25
Address
SCHLOSSPLATZ 4
91054 Erlangen
Germany

See on map

Region
Bayern Mittelfranken Erlangen, Kreisfreie Stadt
Activity type
Higher or Secondary Education Establishments
Links
Total cost
€ 814 946,25

Participants (4)