Project description
Design and creation of autonomous protein motors
The ultimate goal of the EU-funded ArtMotor project is to design and build from the bottom up functional, synthetic protein motors capable of moving and transducing energy. The project will capitalise on the expertise in computational protein design, structural and molecular biology, and the utilisation of existing non-motor protein modules of known molecular function. The researchers will construct relatively simple protein motors that require external control while approaching the creation of an autonomous protein motor capable of moving along a track. Building autonomous protein motors with a wide range of properties, functionalities and performance characteristics could allow the transduction of the chemical energy into mechanical work more efficiently than human-made combustion engines.
Objective
Molecular motors and machines are essential for all cellular processes that together enable life. Built from proteins, with a wide range of properties, functionalities and performance characteristics, biological motors perform complex tasks and can transduce chemical energy into mechanical work more efficiently than human-made combustion engines. Sophisticated studies of biological protein motors have led to much structural and biophysical information and the development of models for motor function.
However, from the study of highly evolved, biological motors it remains difficult to discern detailed mechanisms, for example about the relative role of different force generation mechanisms, or how information is communicated across a protein to achieve the necessary coordination. A promising, complementary approach to answering these questions is to build synthetic protein motors from the bottom up. Indeed, much effort has been invested in functional protein design, but so far, the ‘holy grail’ of designing and building a functional synthetic protein motor has not been realized.
The purpose of ArtMotor is to design and build functional, synthetic protein motors capable of moving and transducing energy, based on existing, non-motor protein modules of known molecular function. Harnessing the synergy of expertise in computational protein design, structural and molecular biology, and single-molecule detection, we will use a two-pronged approach to (a) construct relatively simple protein motors that will require external control, while (b) construct, step by step, an autonomous protein motor capable of moving along a track. Such a functional, synthetic protein will constitute a ground-breaking advance in synthetic biology, physics and engineering. In addition to gaining new insights into mechanisms of energy transduction in proteins, we will also inspire other, complex protein designs that may lead to advances in fields from enzyme design to nano-engineering.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- engineering and technology electrical engineering, electronic engineering, information engineering information engineering
- natural sciences biological sciences biochemistry biomolecules proteins enzymes
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
ERC-SyG - Synergy grant
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2020-SyG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
22100 Lund
Sweden
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.