Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Integration of the Biochemical and Mechanical Networks of Cell Division

Project description

Rebuilding life’s most important mechanism

A cell first goes through a radical transformation before it splits. Cell division is one of the most fundamental processes in life. The ERC-funded BIOMECANET project will study this mechanism that involves out-of-equilibrium chemistry of many components. It will rebuild the mechanism, reassembling the engine of division. Specifically, the project’s goal is to unravel this interplay by re-engineering it in vitro and by modelling it in silico. It will analyse the emergence of complex life-like biological functions by combining these reconstituted networks, integrating temporal control and mechanical forces. This will elevate the scale and scope of in vitro reconstitutions.

Objective

Cellular and sub-cellular organisation at the micrometre length scale ultimately reflects the activity of molecular networks that harness chemical energy to perform precise mechanical work, create functional spatial gradients, and sustain timely temporal changes in molecular activities. In eukaryotic cell division, the biochemical oscillations of the cell cycle drive dramatic morphological changes of the cytoskeleton necessary for bi-orientation of chromosomes and for their subsequent delivery into two daughter cells. This mechanism is at the heart of biology, but it is poorly understood and hard to address because it involves out-of-equilibrium chemistry of many components and Brownian mechanics of the cytoskeleton. BIOMECANET’s extraordinarily ambitious goal is to unravel this interplay by re-engineering it in vitro and by modelling it in silico. To achieve this, BIOMECANET will mobilize an unrivalled catalogue of purified human proteins to reconstitute four fundamental and interlinked biochemical and mechanical protein networks: 1) the cell cycle oscillator with the spindle assembly checkpoint; 2) the metaphase spindle; 3) the chromosome bi-orientation machinery of kinetochores; and 4) the central spindle and its links with the actin cytoskeleton required for cell fission. Then, BIOMECANET will combine these reconstituted networks, integrating temporal control and mechanical forces to analyse the emergence of complex life-like biological function, thus elevating scale and scope of in vitro reconstitutions to an entirely new level. Crucial to the attainment of BIOMECANET’s long-term goals is the synergetic alliance of two biochemists having pioneered different types of biochemical reconstitutions in the complementary areas of cell cycle and chromosome biology (Musacchio) and the cytoskeleton (Surrey), and a theoretician having pioneered physically faithful modelling and simulation of intracellular systems (Nédélec).

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

ERC-SyG - Synergy grant

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) ERC-2020-SyG

See all projects funded under this call

Host institution

MAX-PLANCK-GESELLSCHAFT ZUR FORDERUNG DER WISSENSCHAFTEN EV
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 3 100 000,00
Address
HOFGARTENSTRASSE 8
80539 MUNCHEN
Germany

See on map

Region
Bayern Oberbayern München, Kreisfreie Stadt
Activity type
Research Organisations
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 3 100 000,00

Beneficiaries (3)

My booklet 0 0