Descripción del proyecto
La investigación termodinámica de los sistemas cuánticos de ingeniería toma impulso
Los sistemas cuánticos que albergan estados electrónicos correlacionados tienen un gran interés fundamental y tecnológico. A menudo dan lugar a cuasipartículas exóticas, como los fermiones de Majorana, cuya robustez topológica inherente tiene un gran potencial para su uso como cúbits en la computación cuántica. Con el fin de comprender los estados electrónicos exóticos de los materiales cuánticos, el proyecto financiado con fondos europeos Quantropy definirá nuevas formas de medir sus propiedades termodinámicas, en particular, la entropía. Lamentablemente, resulta difícil analizar los estados electrónicos en sistemas de baja dimensión, en parte debido a la pequeño cantidad de electrones implicados. El aprovechamiento pleno de las mediciones de la entropía en el ámbito de la física mesoscópica permitirá avanzar en la comprensión mecanicista de los estados cuánticos correlacionados en las estructuras de ingeniería.
Objetivo
Quantum systems that have been engineered to host correlated electronic states are of outstanding fundamental and technological interest. Often ‘exotic’ new quasi-particles emerge, such as Majorana fermions, whose inherent topological robustness forms the basis of a promising approach to quantum computation. Another recent example are sheets of pencil-lead graphene which superconduct with a proper twist between layers.
Thermodynamic probes have been central for characterising new phases of matter in bulk materials. Low-dimensional systems offer greater opportunities for control, but probing their electronic states in a similar way is notoriously difficult, in part because of the small number of electrons involved.
The objective of this project is to overcome this challenge and to develop a unique conceptual and experimental foundation for exploring correlated quantum states in low-dimensional systems by measuring thermodynamic quantities, in particular entropy. Entropy is one of the most fundamental of physical properties, and in recent years has been recognized as a key to understanding systems as diverse as qubits and black holes. Fully exploiting entropy measurements in mesoscopic physics will open up a new window to a mechanistic understanding of correlated quantum states in engineered structures, with promise for ground-breaking novel device paradigms.
Members of the consortium have pioneered some of the few existing approaches to making thermodynamic measurements of low-dimensional systems. In combining our expertise, we will develop, test and explore a versatile suite of thermodynamic probes, and in particular i) demonstrate fractional entropy as an unequivocal observable for exotic states, including Majorana fermions; ii) develop thermodynamic measurement paradigms to probe correlated states in novel materials, in particular twisted bilayer graphene; and iii) achieve the first-time measurement of macroscopic entanglement entropy in solid-state systems.
Ámbito científico
- natural sciencesphysical sciencesquantum physics
- natural sciencesphysical sciencestheoretical physicsparticle physicsfermions
- natural sciencesphysical sciencesthermodynamics
- natural sciencesphysical sciencescondensed matter physicsmesoscopic physics
- natural sciencesphysical sciencesastronomyastrophysicsblack holes
Palabras clave
Programa(s)
Tema(s)
Régimen de financiación
ERC-SyG - Synergy grantInstitución de acogida
8092 Zuerich
Suiza