Projektbeschreibung
Thermodynamik-Forschung zu künstlichen Quantensystemen läuft sich warm
Quantensysteme, die korrelierte elektronische Zustände beherbergen, sind von herausragendem grundlegendem und technologischem Interesse. Sie führen häufig zu exotischen Quasiteilchen wie Majorana-Fermionen, deren inhärente topologische Robustheit ein großes Potenzial für den Einsatz als QuBits in der Quanteninformatik birgt. Um die exotischen elektronischen Zustände in Quantenmaterialien zu verstehen, wird das EU-finanzierte Projekt Quantropy neue Messmethoden im Hinblick auf ihre thermodynamischen Eigenschaften, insbesondere der Entropie, entwickeln. Die Untersuchung elektronischer Zustände in niedrigdimensionalen Systemen gestaltet sich bekanntermaßen schwierig. Das ist zum Teil in der geringen Anzahl der beteiligten Elektronen begründet. Die vollständige Nutzung von Entropiemessungen in der mesoskopischen Physik wird das mechanistische Verständnis korrelierter Quantenzustände in künstlich hergestellten Strukturen voranbringen.
Ziel
Quantum systems that have been engineered to host correlated electronic states are of outstanding fundamental and technological interest. Often ‘exotic’ new quasi-particles emerge, such as Majorana fermions, whose inherent topological robustness forms the basis of a promising approach to quantum computation. Another recent example are sheets of pencil-lead graphene which superconduct with a proper twist between layers.
Thermodynamic probes have been central for characterising new phases of matter in bulk materials. Low-dimensional systems offer greater opportunities for control, but probing their electronic states in a similar way is notoriously difficult, in part because of the small number of electrons involved.
The objective of this project is to overcome this challenge and to develop a unique conceptual and experimental foundation for exploring correlated quantum states in low-dimensional systems by measuring thermodynamic quantities, in particular entropy. Entropy is one of the most fundamental of physical properties, and in recent years has been recognized as a key to understanding systems as diverse as qubits and black holes. Fully exploiting entropy measurements in mesoscopic physics will open up a new window to a mechanistic understanding of correlated quantum states in engineered structures, with promise for ground-breaking novel device paradigms.
Members of the consortium have pioneered some of the few existing approaches to making thermodynamic measurements of low-dimensional systems. In combining our expertise, we will develop, test and explore a versatile suite of thermodynamic probes, and in particular i) demonstrate fractional entropy as an unequivocal observable for exotic states, including Majorana fermions; ii) develop thermodynamic measurement paradigms to probe correlated states in novel materials, in particular twisted bilayer graphene; and iii) achieve the first-time measurement of macroscopic entanglement entropy in solid-state systems.
Wissenschaftliches Gebiet
- natural sciencesphysical sciencesquantum physics
- natural sciencesphysical sciencestheoretical physicsparticle physicsfermions
- natural sciencesphysical sciencesthermodynamics
- natural sciencesphysical sciencescondensed matter physicsmesoscopic physics
- natural sciencesphysical sciencesastronomyastrophysicsblack holes
Schlüsselbegriffe
Programm/Programme
Thema/Themen
Finanzierungsplan
ERC-SyG - Synergy grantGastgebende Einrichtung
8092 Zuerich
Schweiz