Descripción del proyecto
Apilamiento de probabilidades en pos de la energía renovable
Aprovechar el poder de la energía renovable ayudará a mitigar el cambio climático y sus repercusiones porque no conlleva emisiones de dióxido de carbono. Sin embargo, existe un inconveniente: el almacenamiento de energía, ya que es necesario disponer de un método para almacenar el exceso de energía solar y eólica. El proyecto financiado con fondos europeos NANOSTACKS ha descubierto una tecnología para franquear la dificultad de almacenar esta energía en cantidades muy grandes y con una alta densidad energética. Esta tecnología consiste en un nuevo método de cribaje para encontrar pilas de combustible eficientes basadas en materiales rentables. Se empleará un robot para imprimir baterías, pilas de combustible y materiales led, así como conductores, aisladores y diodos, y determinar la función de unas quince mil nanopilas gemelas por portaobjetos. Según el proyecto, este método nuevo no solo proporcionará materiales energéticos innovadores, sino que además facilitará sustancialmente el progreso general de la investigación de materiales.
Objetivo
When compared to fossil fuels only one decisive disadvantage remains for electricity from solar cells and wind mills, namely the difficulty to store this energy in very large quantities and in high energy density. State of the art batteries have a low energy density, and, in addition, cannot handle the needed quantities of energy. In principle, fuel cells could store huge quantities of energy and in in high energy density, but these are not very efficient and, moreover, rely on expensive materials. We want to develop a novel screening method to find efficient fuel cells that rely on cheap materials. KIT developed a novel multi-material nano3D printer that generates ~40.000 nanostacks per glass slide with freely chosen sequential arrangements of printed nanolayers that are made of nanoparticles or organic materials. We want to use this robot to print conductors, isolators, diodes, battery-, fuel cell-, and LED-materials, and then screen ~15.000 twin-nanostacks per glass slide for function. We will start with diodes that are made of a ZnO layer on top of ITO nanoparticles. When positioned in between two capacitor plates, an AC current will drive electrons unidirectional through all of these nanostack-diodes from where they travel back through the adjacent twin nanostack. If this twin nanostack is a functional battery, reduced battery materials are identified in a scanner, while functional LED nanostacks identify themselves through emitted light. Functional LED- or battery-nanostacks will then be used to identify those nanostacks that work as a fuel cell. We think that this new method will advance materials research beyond the screening for novel energy materials.
Ámbito científico
Palabras clave
Programa(s)
Convocatoria de propuestas
Consulte otros proyectos de esta convocatoriaConvocatoria de subcontratación
H2020-EIC-FETPROACT-2019
Régimen de financiación
RIA - Research and Innovation actionCoordinador
76131 Karlsruhe
Alemania