Project description
AI-aided strategies for enhancing SME innovation in robotics
Robots act in the real world. When deploying Artificial Intelligence (AI) methods on robots, the continuous and dynamic nature of the physical world raises many challenges which are not encountered in purely digital domains such as Internet search and social networks. To tackle these challenges, the EU-funded project VeriDream builds on the DREAM and RobDream research projects to pursue a two-fold innovation strategy for AI in robotics. Its deep innovation strategy will strive to achieve high technological readiness in a set of use cases at a warehouse logistics start-up. Its broad innovation strategy will promote a wider uptake of effective innovation methods in SMEs, thus enhancing the innovation potential of SMEs in AI for robotics.
Objective
"Advances in artificial intelligence (AI) are changing the business models of many companies, and creating entirely new ones. But whereas the general public associates AI predominantly with autonomous and humanoid robots, the economic impact of AI on robotics has been very limited in comparison to domains which were digitised from the start, such as Internet search and social networks. This is because acting in the physical world raises many challenges related to the variability of the real world, its continuous and dynamic nature, as well as the consequences of suboptimal or erroneous behaviour.
To address these challenges, VeriDream proposes a two-fold research and innovation strategy for AI in robotics, based on the generalisation and robustification of AI methods developed by the three research partners in two previous H2020 projects, DREAM and RobDREAM. The deep innovation strategy aims at high TRL on a set of use cases from the specific domain of warehouse logistics at the start-up Magazino. The broad innovation strategy, pursued by Synesis and GoodAI, aims at fostering a broader uptake of DREAM methods in SMEs, also beyond the project, and even beyond robotics. VeriDream thus aim at both concrete high-TRL innovation success stories, as well as providing experience and templates for innovation from which other European SMEs may profit.
In both strategies, our methodology is based on ""closing the innovation loop"". This means that research on AI methods is driven less by performance on static benchmarks, but rather by general methodological requirements derived from the performance on multiple industrial use cases. This will require scientific advances in state representation learning, failure discovery and resolution, and continual learning. The generalisation and robustification of DREAM methods that results from this research will have a substantial impact on the innovation potential of these methods. Demonstrating this is VeriDream's mission."
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences computer and information sciences artificial intelligence
- natural sciences computer and information sciences internet
- engineering and technology electrical engineering, electronic engineering, information engineering electronic engineering robotics autonomous robots
- social sciences economics and business business and management business models
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.2. - EXCELLENT SCIENCE - Future and Emerging Technologies (FET)
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.1.2.2. - FET Proactive
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
RIA - Research and Innovation action
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-FETPROACT-2019-2020
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
51147 KOLN
Germany
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.