Skip to main content
Vai all'homepage della Commissione europea (si apre in una nuova finestra)
italiano italiano
CORDIS - Risultati della ricerca dell’UE
CORDIS

ALMA: Human Centric Algebraic Machine Learning

Descrizione del progetto

Sfruttare l’algebra astratta per un’intelligenza artificiale più trasparente

L’apprendimento automatico algebrico costituisce una tecnica di apprendimento automatico relativamente nuova, basata sulle rappresentazioni algebriche dei dati. A differenza dell’apprendimento statistico, gli algoritmi dell’apprendimento automatico algebrico dimostrano solidità in fatto di proprietà statistiche dei dati e non necessitano di parametri. Lo scopo del progetto ALMA, finanziato dall’UE, è l’impiego delle proprietà dell’apprendimento automatico algebrico per sviluppare una nuova generazione di sistemi di apprendimento automatico interattivi e incentrati sugli individui. Questi sistemi dovrebbero ridurre gli errori ed evitare la discriminazione, ricordando quello che sanno quando imparano qualcosa di nuovo, favorendo l’attendibilità e l’affidabilità e l’integrazione di vincoli etici complessi all’interno di sistemi di intelligenza umana-artificiale. Inoltre, dovrebbero promuovere l’apprendimento distribuito e collaborativo.

Obiettivo

Algebraic Machine Learning (AML) has recently been proposed as new learning paradigm that builds upon Abstract Algebra, Model Theory. Unlike other popular learning algorithms, AML is not a statistical method, but it produces generalizing models from semantic embeddings of data into discrete algebraic structures, with the following properties:

P1: Is far less sensitive to the statistical characteristics of the training data and does not fit (or even use) parameters

P2: Has the potential to seamlessly integrate unstructured and complex information contained in training data, with a formal representation of human knowledge and requirements;

P3. Uses internal representations based on discrete sets and graphs, offering a good starting point for generating human understandable, descriptions of what, why and how has been learned

P4. Can be implemented in a distributed way that avoids centralized, privacy-invasive collections of large data sets in favor of a collaboration of many local learners at the level of learned partial representations.

The aim of the project is to leverage the above properties of AML for a new generation of Interactive, Human-Centric Machine Learning systems., that will:

- Reduce bias and prevent discrimination by reducing dependence on statistical properties of training data (P1), integrating human knowledge with constraints (P2), and exploring the how and why of the learning process (P3)
- Facilitate trust and reliability by respecting hard human-defined constraints in the learning process (P2) and enhancing explainability of the learning process (P3)
- Integrate complex ethical constraints into Human-AI systems by going beyond basic bias and discrimination prevention (P2) to interactively shaping the ethics related to the learning process between humans and the AI system (P3)
- Facilitate a new distributed, incremental collaborative learning method by going beyond the dominant off-line and centralized data processing approach (P4)

Campo scientifico (EuroSciVoc)

CORDIS classifica i progetti con EuroSciVoc, una tassonomia multilingue dei campi scientifici, attraverso un processo semi-automatico basato su tecniche NLP. Cfr.: https://op.europa.eu/it/web/eu-vocabularies/euroscivoc.

È necessario effettuare l’accesso o registrarsi per utilizzare questa funzione

Parole chiave

Parole chiave del progetto, indicate dal coordinatore del progetto. Da non confondere con la tassonomia EuroSciVoc (campo scientifico).

Programma(i)

Programmi di finanziamento pluriennali che definiscono le priorità dell’UE in materia di ricerca e innovazione.

Argomento(i)

Gli inviti a presentare proposte sono suddivisi per argomenti. Un argomento definisce un’area o un tema specifico per il quale i candidati possono presentare proposte. La descrizione di un argomento comprende il suo ambito specifico e l’impatto previsto del progetto finanziato.

Meccanismo di finanziamento

Meccanismo di finanziamento (o «Tipo di azione») all’interno di un programma con caratteristiche comuni. Specifica: l’ambito di ciò che viene finanziato; il tasso di rimborso; i criteri di valutazione specifici per qualificarsi per il finanziamento; l’uso di forme semplificate di costi come gli importi forfettari.

RIA - Research and Innovation action

Vedi tutti i progetti finanziati nell’ambito di questo schema di finanziamento

Invito a presentare proposte

Procedura per invitare i candidati a presentare proposte di progetti, con l’obiettivo di ricevere finanziamenti dall’UE.

(si apre in una nuova finestra) H2020-FETPROACT-2019-2020

Vedi tutti i progetti finanziati nell’ambito del bando

Coordinatore

PROYECTOS Y SISTEMAS DE MANTENIMIENTO SL
Contributo netto dell'UE

Contributo finanziario netto dell’UE. La somma di denaro che il partecipante riceve, decurtata dal contributo dell’UE alla terza parte collegata. Tiene conto della distribuzione del contributo finanziario dell’UE tra i beneficiari diretti del progetto e altri tipi di partecipanti, come i partecipanti terzi.

€ 731 500,00
Indirizzo
PLAZA ENCINA DE LA NUM 10 ESC 4 PLANTA 2
28760 TRES CANTOS MADRID
Spagna

Mostra sulla mappa

PMI

L’organizzazione si è definita una PMI (piccola e media impresa) al momento della firma dell’accordo di sovvenzione.

Regione
Comunidad de Madrid Comunidad de Madrid Madrid
Tipo di attività
Private for-profit entities (excluding Higher or Secondary Education Establishments)
Collegamenti
Costo totale

I costi totali sostenuti dall’organizzazione per partecipare al progetto, compresi i costi diretti e indiretti. Questo importo è un sottoinsieme del bilancio complessivo del progetto.

€ 731 500,00

Partecipanti (8)

Il mio fascicolo 0 0