Project description
When autonomous cars can monitor their close-distance environment
Autonomous cars represent the future of transportation. However, some issues need to be resolved when it comes to the car evaluating close-distance risks. The EU-funded TOPOSENS project aims to provide the first patented three-dimensional ultrasonic sensor technology that will enable the autonomous car to monitor its close-distance environment. The project's 3D technology will be based on a hardware that will include multiple microphones and one transducer. Combined with a patented algorithm, the data will get converted into a 3D point cloud and will detect all obstacles close to the car. It is expected that TOPOSENS will change the dynamics of the advanced driver assistance systems (ADAS), displacing current technologies.
Objective
Toposens offers the world’s first patented 3D ultrasonic sensor technology, enabling close-distance environment monitoring, making them suitable for (rear) automatic emergency braking, living object protection around and below the car and autonomous driving applications.
Unlike existing sensor technologies that can be negatively impacted by light conditions, reflections, and weather, Toposens sensors follow the principles of a bat’s echolocation, which can see tiny objects by emitting ultrasonic signals and receiving their reflections. Our 3D close-distance vision technology allows a three-dimensional data output thanks to the hardware setup of Toposens sensors which includes multiple microphones and one transducer. Combined with a patented algorithm the data gets converted into a 3D point cloud (X, Y and Z coordinates in space) and thus allows the detection of all relevant obstacles in the close-range area. Current ultrasonic sensors generate only 1D depth data, no position and are therefore very limited for autonomous technologies. Allowing the highest degrees of autonomy (level 4 or level 5 of autonomous driving), Toposens technology will become an important puzzle piece in the future of mobility.
The biggest advantages of the world’s first 3D Ultrasound Sensor Vision combine robustness, low-cost and precise 3D vision for emerging technologies, highly beneficial for the future of autonomous driving & robotics. The sensor is designed to increase safety while enhancing driving experience. Besides its use for Advanced Driver Assistance Systems (ADAS) systems, automotive applications range from parking assist to autonomous valet parking to passenger monitoring inside the vehicle for increased safety and comfort.
Toposens has the potential to change the dynamics of the Advance Driver Assistance Systems (ADAS) Market over a few years, displacing the state-of-the-art technologies.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- engineering and technology electrical engineering, electronic engineering, information engineering electronic engineering sensors
- engineering and technology electrical engineering, electronic engineering, information engineering electronic engineering robotics
- natural sciences physical sciences acoustics ultrasound
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.2.3. - INDUSTRIAL LEADERSHIP - Innovation In SMEs
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.3. - PRIORITY 'Societal challenges
See all projects funded under this programme -
H2020-EU.2.1. - INDUSTRIAL LEADERSHIP - Leadership in enabling and industrial technologies
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
SME-2 - SME instrument phase 2
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-EIC-SMEInst-2018-2020
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
80807 Munich
Germany
The organization defined itself as SME (small and medium-sized enterprise) at the time the Grant Agreement was signed.
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.