Objectif
The analysis of fields is one of the most active branches of Model Theory, which has found its most spectacular applications in Hrushovski's proofs of the Mordell-Lang and Manin-Mumford conjectures.
There are three principal aspects:
- ways of interpreting a field,
- studying the general properties of fields thus obtained, and
- determining the properties of particular theories of fields (with additional algebraic structure like a derivation or an automorphism).
All three aspects are closely interrelated. This proposal concerns mainly part (b). A theorem of Macintyre, Cherlin and Shelah states that a super-stable field is algebraically closed; this theorem is at the basis of many applications. Recently Kim and Pillay have extended the apparatus of stability theory to a wider class: simple theories; Pillay has conjectured that super-simple fields are perfect, bounded and pseudo-algebraically closed (the converse was shown by Hrushovski).
A positive answer to this conjecture should play a role similar to Macintyre's theorem. Since Pillay and Poizat have shown super-simple fields to be perfect and bounded, only the PAC condition that every absolutely irreducible variety has a rational point needs to be checked; this can be reduced to the consideration of plane curves.
The case of elliptic and hyperelliptic curves with generic modulus has already been dealt with; however, attempts to treat the non-generic case have met with considerable difficulty. We propose to prove triviality of the first cohomology group in order to treat the non-elliptic genus 1 case. We shall also consider isogenies between elliptic curves defined over our field, in order to treat the case of non-generic j-invariant.
Finally, we want to study the question whether super-simple fields are C_1 (related to a question of Ax). A natural approach here will be to study cubic surfaces over a super-simple field. This programme interrelates Algebraic Geometry, Field Theory and Model Theory.
Champ scientifique (EuroSciVoc)
CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN. Voir: Le vocabulaire scientifique européen.
CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN. Voir: Le vocabulaire scientifique européen.
- sciences naturelles mathématiques mathématiques pures mathématiques discrètes logique mathématique
- sciences naturelles mathématiques mathématiques pures géométrie
- sciences naturelles mathématiques mathématiques pures algèbre géométrie algébrique
Vous devez vous identifier ou vous inscrire pour utiliser cette fonction
Nous sommes désolés... Une erreur inattendue s’est produite.
Vous devez être authentifié. Votre session a peut-être expiré.
Merci pour votre retour d'information. Vous recevrez bientôt un courriel confirmant la soumission. Si vous avez choisi d'être informé de l'état de la déclaration, vous serez également contacté lorsque celui-ci évoluera.
Mots‑clés
Les mots-clés du projet tels qu’indiqués par le coordinateur du projet. À ne pas confondre avec la taxonomie EuroSciVoc (champ scientifique).
Les mots-clés du projet tels qu’indiqués par le coordinateur du projet. À ne pas confondre avec la taxonomie EuroSciVoc (champ scientifique).
Programme(s)
Programmes de financement pluriannuels qui définissent les priorités de l’UE en matière de recherche et d’innovation.
Programmes de financement pluriannuels qui définissent les priorités de l’UE en matière de recherche et d’innovation.
Thème(s)
Les appels à propositions sont divisés en thèmes. Un thème définit un sujet ou un domaine spécifique dans le cadre duquel les candidats peuvent soumettre des propositions. La description d’un thème comprend sa portée spécifique et l’impact attendu du projet financé.
Les appels à propositions sont divisés en thèmes. Un thème définit un sujet ou un domaine spécifique dans le cadre duquel les candidats peuvent soumettre des propositions. La description d’un thème comprend sa portée spécifique et l’impact attendu du projet financé.
Appel à propositions
Procédure par laquelle les candidats sont invités à soumettre des propositions de projet en vue de bénéficier d’un financement de l’UE.
Procédure par laquelle les candidats sont invités à soumettre des propositions de projet en vue de bénéficier d’un financement de l’UE.
FP6-2002-MOBILITY-5
Voir d’autres projets de cet appel
Régime de financement
Régime de financement (ou «type d’action») à l’intérieur d’un programme présentant des caractéristiques communes. Le régime de financement précise le champ d’application de ce qui est financé, le taux de remboursement, les critères d’évaluation spécifiques pour bénéficier du financement et les formes simplifiées de couverture des coûts, telles que les montants forfaitaires.
Régime de financement (ou «type d’action») à l’intérieur d’un programme présentant des caractéristiques communes. Le régime de financement précise le champ d’application de ce qui est financé, le taux de remboursement, les critères d’évaluation spécifiques pour bénéficier du financement et les formes simplifiées de couverture des coûts, telles que les montants forfaitaires.
Coordinateur
VILLEURBANNE
France
Les coûts totaux encourus par l’organisation concernée pour participer au projet, y compris les coûts directs et indirects. Ce montant est un sous-ensemble du budget global du projet.