Obiettivo
The analysis of fields is one of the most active branches of Model Theory, which has found its most spectacular applications in Hrushovski's proofs of the Mordell-Lang and Manin-Mumford conjectures.
There are three principal aspects:
- ways of interpreting a field,
- studying the general properties of fields thus obtained, and
- determining the properties of particular theories of fields (with additional algebraic structure like a derivation or an automorphism).
All three aspects are closely interrelated. This proposal concerns mainly part (b). A theorem of Macintyre, Cherlin and Shelah states that a super-stable field is algebraically closed; this theorem is at the basis of many applications. Recently Kim and Pillay have extended the apparatus of stability theory to a wider class: simple theories; Pillay has conjectured that super-simple fields are perfect, bounded and pseudo-algebraically closed (the converse was shown by Hrushovski).
A positive answer to this conjecture should play a role similar to Macintyre's theorem. Since Pillay and Poizat have shown super-simple fields to be perfect and bounded, only the PAC condition that every absolutely irreducible variety has a rational point needs to be checked; this can be reduced to the consideration of plane curves.
The case of elliptic and hyperelliptic curves with generic modulus has already been dealt with; however, attempts to treat the non-generic case have met with considerable difficulty. We propose to prove triviality of the first cohomology group in order to treat the non-elliptic genus 1 case. We shall also consider isogenies between elliptic curves defined over our field, in order to treat the case of non-generic j-invariant.
Finally, we want to study the question whether super-simple fields are C_1 (related to a question of Ax). A natural approach here will be to study cubic surfaces over a super-simple field. This programme interrelates Algebraic Geometry, Field Theory and Model Theory.
Campo scientifico (EuroSciVoc)
CORDIS classifica i progetti con EuroSciVoc, una tassonomia multilingue dei campi scientifici, attraverso un processo semi-automatico basato su tecniche NLP. Cfr.: Il Vocabolario Scientifico Europeo.
CORDIS classifica i progetti con EuroSciVoc, una tassonomia multilingue dei campi scientifici, attraverso un processo semi-automatico basato su tecniche NLP. Cfr.: Il Vocabolario Scientifico Europeo.
- scienze naturali matematica matematica pura matematica discreta logica matematica
- scienze naturali matematica matematica pura geometria
- scienze naturali matematica matematica pura algebra geometria algebrica
È necessario effettuare l’accesso o registrarsi per utilizzare questa funzione
Siamo spiacenti… si è verificato un errore inatteso durante l’esecuzione.
È necessario essere autenticati. La sessione potrebbe essere scaduta.
Grazie per il tuo feedback. Riceverai presto un'e-mail di conferma dell'invio. Se hai scelto di ricevere una notifica sullo stato della segnalazione, sarai contattato anche quando lo stato della segnalazione cambierà.
Parole chiave
Parole chiave del progetto, indicate dal coordinatore del progetto. Da non confondere con la tassonomia EuroSciVoc (campo scientifico).
Parole chiave del progetto, indicate dal coordinatore del progetto. Da non confondere con la tassonomia EuroSciVoc (campo scientifico).
Programma(i)
Programmi di finanziamento pluriennali che definiscono le priorità dell’UE in materia di ricerca e innovazione.
Programmi di finanziamento pluriennali che definiscono le priorità dell’UE in materia di ricerca e innovazione.
Argomento(i)
Gli inviti a presentare proposte sono suddivisi per argomenti. Un argomento definisce un’area o un tema specifico per il quale i candidati possono presentare proposte. La descrizione di un argomento comprende il suo ambito specifico e l’impatto previsto del progetto finanziato.
Gli inviti a presentare proposte sono suddivisi per argomenti. Un argomento definisce un’area o un tema specifico per il quale i candidati possono presentare proposte. La descrizione di un argomento comprende il suo ambito specifico e l’impatto previsto del progetto finanziato.
Invito a presentare proposte
Procedura per invitare i candidati a presentare proposte di progetti, con l’obiettivo di ricevere finanziamenti dall’UE.
Procedura per invitare i candidati a presentare proposte di progetti, con l’obiettivo di ricevere finanziamenti dall’UE.
FP6-2002-MOBILITY-5
Vedi altri progetti per questo bando
Meccanismo di finanziamento
Meccanismo di finanziamento (o «Tipo di azione») all’interno di un programma con caratteristiche comuni. Specifica: l’ambito di ciò che viene finanziato; il tasso di rimborso; i criteri di valutazione specifici per qualificarsi per il finanziamento; l’uso di forme semplificate di costi come gli importi forfettari.
Meccanismo di finanziamento (o «Tipo di azione») all’interno di un programma con caratteristiche comuni. Specifica: l’ambito di ciò che viene finanziato; il tasso di rimborso; i criteri di valutazione specifici per qualificarsi per il finanziamento; l’uso di forme semplificate di costi come gli importi forfettari.
Coordinatore
VILLEURBANNE
Francia
I costi totali sostenuti dall’organizzazione per partecipare al progetto, compresi i costi diretti e indiretti. Questo importo è un sottoinsieme del bilancio complessivo del progetto.