Skip to main content
Vai all'homepage della Commissione europea (si apre in una nuova finestra)
italiano italiano
CORDIS - Risultati della ricerca dell’UE
CORDIS
Contenuto archiviato il 2024-06-16

Algebraic Curves over super-simple fields

Obiettivo

The analysis of fields is one of the most active branches of Model Theory, which has found its most spectacular applications in Hrushovski's proofs of the Mordell-Lang and Manin-Mumford conjectures.

There are three principal aspects:
- ways of interpreting a field,
- studying the general properties of fields thus obtained, and
- determining the properties of particular theories of fields (with additional algebraic structure like a derivation or an automorphism).

All three aspects are closely interrelated. This proposal concerns mainly part (b). A theorem of Macintyre, Cherlin and Shelah states that a super-stable field is algebraically closed; this theorem is at the basis of many applications. Recently Kim and Pillay have extended the apparatus of stability theory to a wider class: simple theories; Pillay has conjectured that super-simple fields are perfect, bounded and pseudo-algebraically closed (the converse was shown by Hrushovski).

A positive answer to this conjecture should play a role similar to Macintyre's theorem. Since Pillay and Poizat have shown super-simple fields to be perfect and bounded, only the PAC condition that every absolutely irreducible variety has a rational point needs to be checked; this can be reduced to the consideration of plane curves.

The case of elliptic and hyperelliptic curves with generic modulus has already been dealt with; however, attempts to treat the non-generic case have met with considerable difficulty. We propose to prove triviality of the first cohomology group in order to treat the non-elliptic genus 1 case. We shall also consider isogenies between elliptic curves defined over our field, in order to treat the case of non-generic j-invariant.

Finally, we want to study the question whether super-simple fields are C_1 (related to a question of Ax). A natural approach here will be to study cubic surfaces over a super-simple field. This programme interrelates Algebraic Geometry, Field Theory and Model Theory.

Campo scientifico (EuroSciVoc)

CORDIS classifica i progetti con EuroSciVoc, una tassonomia multilingue dei campi scientifici, attraverso un processo semi-automatico basato su tecniche NLP. Cfr.: Il Vocabolario Scientifico Europeo.

È necessario effettuare l’accesso o registrarsi per utilizzare questa funzione

Parole chiave

Parole chiave del progetto, indicate dal coordinatore del progetto. Da non confondere con la tassonomia EuroSciVoc (campo scientifico).

Argomento(i)

Gli inviti a presentare proposte sono suddivisi per argomenti. Un argomento definisce un’area o un tema specifico per il quale i candidati possono presentare proposte. La descrizione di un argomento comprende il suo ambito specifico e l’impatto previsto del progetto finanziato.

Invito a presentare proposte

Procedura per invitare i candidati a presentare proposte di progetti, con l’obiettivo di ricevere finanziamenti dall’UE.

FP6-2002-MOBILITY-5
Vedi altri progetti per questo bando

Meccanismo di finanziamento

Meccanismo di finanziamento (o «Tipo di azione») all’interno di un programma con caratteristiche comuni. Specifica: l’ambito di ciò che viene finanziato; il tasso di rimborso; i criteri di valutazione specifici per qualificarsi per il finanziamento; l’uso di forme semplificate di costi come gli importi forfettari.

EIF - Marie Curie actions-Intra-European Fellowships

Coordinatore

CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE - DELEGATION RHÔNE ALPES - SITE VALLEE DU RHÔNE
Contributo UE
Nessun dato
Costo totale

I costi totali sostenuti dall’organizzazione per partecipare al progetto, compresi i costi diretti e indiretti. Questo importo è un sottoinsieme del bilancio complessivo del progetto.

Nessun dato
Il mio fascicolo 0 0