Skip to main content
Ir a la página de inicio de la Comisión Europea (se abrirá en una nueva ventana)
español español
CORDIS - Resultados de investigaciones de la UE
CORDIS

Advanced machine learning for Innovative Drug Discovery

Descripción del proyecto

Facilitación del aprendizaje automático en química

Para realizar avances en química médica, la próxima generación de científicos debe poseer un conocimiento excelente de química y tecnologías avanzadas como la inteligencia artificial (IA) y el aprendizaje automático. El proyecto financiado con fondos europeos AIDD trabajará para innovar en la investigación de fármacos preparando a una nueva generación de científicos capacitados en aprendizaje automático. Se trata de un recurso esencial para el desarrollo de la industria química, que incluye empresas farmacéuticas, agrobiotecnológicas y otras empresas químicas. Los becarios empleados serán supervisados por académicos con excelentes conocimientos especializados complementarios, además de haber contribuido a algunos de los algoritmos fundamentales de IA utilizados miles de millones de veces al día en el mundo, y empresas farmacéuticas pioneras de la Unión Europea responsables de nuevos medicamentos y de salud pública.

Objetivo

"The dramatic increase in using of Artificial Intelligence (AI) and machine learning methods in different fields of science becomes an essential asset in the development of the chemical industry, including pharmaceutical, agro biotech, and other chemical companies. However, the application of AI in these fields is not straightforward and requires excellent knowledge of chemistry. Thus, there is a strong need to train and prepare a new generation of scientists who have skills both in machine learning and in chemistry and can advance medicinal chemistry, which is the prime goal of the AIDD proposal. Research WPs include sixteen topics selected to cover the key innovative directions in machine learning in chemistry. Fellows employed will be supervised by academics who have excellent complementary expertise and contributed some of the fundamental AI algorithms which are used billions of times per day in the world, and leading EU Pharma companies who are in charge of new medicine and public health. All developed methods can be used individually but will also contribute to an integrated ""One Chemistry"" model that can predict outcomes ranging from different properties to molecule generation and synthesis. Training on various modalities allows the model to understand how to intertwine chemistry and biology to develop a new drug making its design robust and explainable. All partners agreed to make their software open source. It will boost the field and will provide the broadest possible dissemination of the results both to the academy and industry, including SMEs. The network will offer comprehensive, structured training through a well-elaborated Curriculum, online courses, and six Schools. The IP policy and commercial exploitation of the project results have the highest priority supported by intellectual property asset management organizations. Comprehensive public engagement activities will complement the dissemination of results to the scientific community."

Ámbito científico (EuroSciVoc)

CORDIS clasifica los proyectos con EuroSciVoc, una taxonomía plurilingüe de ámbitos científicos, mediante un proceso semiautomático basado en técnicas de procesamiento del lenguaje natural. Véas: https://op.europa.eu/es/web/eu-vocabularies/euroscivoc.

Para utilizar esta función, debe iniciar sesión o registrarse

Palabras clave

Palabras clave del proyecto indicadas por el coordinador del proyecto. No confundir con la taxonomía EuroSciVoc (Ámbito científico).

Programa(s)

Programas de financiación plurianuales que definen las prioridades de la UE en materia de investigación e innovación.

Tema(s)

Las convocatorias de propuestas se dividen en temas. Un tema define una materia o área específica para la que los solicitantes pueden presentar propuestas. La descripción de un tema comprende su alcance específico y la repercusión prevista del proyecto financiado.

Régimen de financiación

Régimen de financiación (o «Tipo de acción») dentro de un programa con características comunes. Especifica: el alcance de lo que se financia; el porcentaje de reembolso; los criterios específicos de evaluación para optar a la financiación; y el uso de formas simplificadas de costes como los importes a tanto alzado.

MSCA-ITN - Marie Skłodowska-Curie Innovative Training Networks (ITN)

Ver todos los proyectos financiados en el marco de este régimen de financiación

Convocatoria de propuestas

Procedimiento para invitar a los solicitantes a presentar propuestas de proyectos con el objetivo de obtener financiación de la UE.

(se abrirá en una nueva ventana) H2020-MSCA-ITN-2020

Ver todos los proyectos financiados en el marco de esta convocatoria

Coordinador

HELMHOLTZ ZENTRUM MUENCHEN DEUTSCHES FORSCHUNGSZENTRUM FUER GESUNDHEIT UND UMWELT GMBH
Aportación neta de la UEn

Aportación financiera neta de la UE. Es la suma de dinero que recibe el participante, deducida la aportación de la UE a su tercero vinculado. Considera la distribución de la aportación financiera de la UE entre los beneficiarios directos del proyecto y otros tipos de participantes, como los terceros participantes.

€ 390 206,98
Dirección
INGOLSTADTER LANDSTRASSE 1
85764 Neuherberg
Alemania

Ver en el mapa

Región
Bayern Oberbayern München, Landkreis
Tipo de actividad
Research Organisations
Enlaces
Coste total

Los costes totales en que ha incurrido esta organización para participar en el proyecto, incluidos los costes directos e indirectos. Este importe es un subconjunto del presupuesto total del proyecto.

€ 390 206,98

Participantes (16)

Mi folleto 0 0