Skip to main content
European Commission logo
español español
CORDIS - Resultados de investigaciones de la UE
CORDIS

Stream Learning for Multilingual Knowledge Transfer

Descripción del proyecto

Enseñar tareas de lenguaje natural a modelos de aprendizaje automático

Internet contiene una ingente cantidad de datos e información, tanto escrita como audiovisual y en muchos idiomas distintos. Existe una creciente necesidad de aprovechar este recurso, el cual se encuentra en gran medida inexplorado. El proyecto financiado con fondos europeos SELMA abordará la cuestión del tratamiento y supervisión de grandes cantidades de datos. El proyecto enseñará a modelos de aprendizaje automático, de forma sistemática, a procesar tareas de lenguaje natural y utilizará dichos modelos para supervisar flujos de datos con el objetivo de mejorar la observación de los medios plurilingües y la producción de contenidos informativos. En última instancia, el proyecto hará avanzar el estado de la técnica en lo que respecta al modelado del lenguaje, la traducción automática y la síntesis y el reconocimiento de voz.

Objetivo

SELMA builds a continuous deep learning multilingual media platform using extreme analytics.

Large amounts of multilingual text and speech data are available in the internet, but the potential to fully take advantage of this data has remained largely untapped. Recent advances in deep learning and transfer learning have opened the door to new possibilities – in particular integrating knowledge from these large unannotated datasets into plugable models for tackling machine learning tasks.

The aim of the Stream Learning for Multilingual Knowledge Transfer (SELMA) is to address three tasks: ingest large amounts of data and continuously train machine learning models for several natural language tasks; monitor these data streams using such models to improve multilingual Media Monitoring (use case 1); and improve the task of multilingual News Content Production (use case 2), thereby closing the loop between content monitoring and production.

SELMA has eight goals: 1. Enable processing of massive video and text data streams in a distributed and scalable fashion 2. Develop new methods for training unsupervised deep learning language models in 30 languages 3. Enable knowledge transfer across tasks and languages, supporting low-resourced languages 4. Develop novel data analytics methods and visualizations to facilitate the media monitoring decision-making process 5. Develop an open-source platform to optimize multilingual content production in 30 languages 6. Fine-tune deep learning models from user feedback, reducing recurring errors 7. Ensure a sustainable exploitation of the SELMA platform 8. Encourage active user involvement in the platform.

Achieving these aims requires advancing the state of the art in multiple technologies (transfer learning, language modelling, speech recognition, machine translation, summarization, speech synthesis, named entity linking, learning from user feedback), while building upon previous project results and existing services.

Convocatoria de propuestas

H2020-ICT-2018-20

Consulte otros proyectos de esta convocatoria

Convocatoria de subcontratación

H2020-ICT-2020-1

Régimen de financiación

RIA - Research and Innovation action

Coordinador

DEUTSCHE WELLE
Aportación neta de la UEn
€ 821 812,50
Dirección
KURT SCHUMACHER STRASSE 3
53113 Bonn
Alemania

Ver en el mapa

Región
Nordrhein-Westfalen Köln Bonn, Kreisfreie Stadt
Tipo de actividad
Public bodies (excluding Research Organisations and Secondary or Higher Education Establishments)
Enlaces
Coste total
€ 821 812,50

Participantes (4)