Skip to main content
Vai all'homepage della Commissione europea (si apre in una nuova finestra)
italiano italiano
CORDIS - Risultati della ricerca dell’UE
CORDIS

Very Efficient Deep Learning in IOT

Descrizione del progetto

Spingere il potere dell’apprendimento profondo nell’Internet delle cose

Mentre l’Internet delle cose (IoT) continua a prendere forma, promettendo un’automazione e uno scambio di dati su larga scala, una delle maggiori sfide è quella di agire sui dati generati. La quantità di dati raccolti è enorme, la potenza di calcolo necessaria per l’elaborazione è elevata e gli algoritmi sono complessi. Il progetto VEDLIoT, finanziato dall’UE, sviluppa una piattaforma IoT che utilizza algoritmi di apprendimento profondo distribuiti in tutto il continuum dell’IoT. Si prevede che la nuova piattaforma proposta, con un’architettura IoT innovativa, apporterà vantaggi significativi a un gran numero di applicazioni, tra cui i robot industriali, le auto a guida autonoma e le case intelligenti. Il progetto offre un Bando aperto a metà progetto, incorporando nel progetto ulteriori casi d’uso industriali legati a VEDLIoT e aumentando la maturità commerciale delle soluzioni VEDLIoT.

Obiettivo

The ever increasing performance of computer systems in general and IoT systems, in particular, delivers the capability to solve increasingly challenging problems, pushing automation to improve the quality of our life. This triggers the need for a next-generation IoT architecture, satisfying the demand for key sectors like transportation (e.g. self-driving cars), industry (e.g. robotization or predictive maintenance), and our homes (e.g. assisted living). Such applications require building systems of enormous complexity, so that traditional approaches start to fail. The amount of data collected and processed is huge, the computational power required is very high, and the algorithms are too complex allowing for the computation of solutions within the tight time constraints. In addition, security, privacy, or robustness for such systems becomes a critical challenge.
An enabler that aims at delivering the required keystone is VEDLIoT, a Very Efficient Deep Learning IoT platform. Instead of traditional algorithms, artificial intelligence (AI) and deep learning (DL) are used to handle the large complexity. Due to the distributed approach, VEDLIoT allows dividing the application into smaller and more efficient components and work together in large collaborative systems in the Internet of Things (IoT), enabling AI-based algorithms that are distributed over IoT devices from edge to cloud.
In terms of hardware, VEDLIoT offers a platform, the Cognitive IoT platform, leveraging European technology, which can be easily configured to be placed at any level of the compute continuum starting from the sensor nodes and then edge to cloud. Driven by use cases in the key sectors of automotive, industrial, and smart homes, the platform is supported by cross-cutting aspects satisfying security and robustness. Overall, VEDLIoT offers a framework for the Next Generation Internet based on IoT devices required for collaboratively solving complex DL applications across a distributed system.

Campo scientifico (EuroSciVoc)

CORDIS classifica i progetti con EuroSciVoc, una tassonomia multilingue dei campi scientifici, attraverso un processo semi-automatico basato su tecniche NLP. Cfr.: https://op.europa.eu/it/web/eu-vocabularies/euroscivoc.

È necessario effettuare l’accesso o registrarsi per utilizzare questa funzione

Parole chiave

Parole chiave del progetto, indicate dal coordinatore del progetto. Da non confondere con la tassonomia EuroSciVoc (campo scientifico).

Programma(i)

Programmi di finanziamento pluriennali che definiscono le priorità dell’UE in materia di ricerca e innovazione.

Argomento(i)

Gli inviti a presentare proposte sono suddivisi per argomenti. Un argomento definisce un’area o un tema specifico per il quale i candidati possono presentare proposte. La descrizione di un argomento comprende il suo ambito specifico e l’impatto previsto del progetto finanziato.

Meccanismo di finanziamento

Meccanismo di finanziamento (o «Tipo di azione») all’interno di un programma con caratteristiche comuni. Specifica: l’ambito di ciò che viene finanziato; il tasso di rimborso; i criteri di valutazione specifici per qualificarsi per il finanziamento; l’uso di forme semplificate di costi come gli importi forfettari.

RIA - Research and Innovation action

Vedi tutti i progetti finanziati nell’ambito di questo schema di finanziamento

Invito a presentare proposte

Procedura per invitare i candidati a presentare proposte di progetti, con l’obiettivo di ricevere finanziamenti dall’UE.

(si apre in una nuova finestra) H2020-ICT-2018-20

Vedi tutti i progetti finanziati nell’ambito del bando

Coordinatore

UNIVERSITAET BIELEFELD
Contributo netto dell'UE

Contributo finanziario netto dell’UE. La somma di denaro che il partecipante riceve, decurtata dal contributo dell’UE alla terza parte collegata. Tiene conto della distribuzione del contributo finanziario dell’UE tra i beneficiari diretti del progetto e altri tipi di partecipanti, come i partecipanti terzi.

€ 1 899 000,00
Indirizzo
UNIVERSITAETSSTRASSE 25
33615 Bielefeld
Germania

Mostra sulla mappa

Regione
Nordrhein-Westfalen Detmold Bielefeld, Kreisfreie Stadt
Tipo di attività
Higher or Secondary Education Establishments
Collegamenti
Costo totale

I costi totali sostenuti dall’organizzazione per partecipare al progetto, compresi i costi diretti e indiretti. Questo importo è un sottoinsieme del bilancio complessivo del progetto.

€ 1 899 000,00

Partecipanti (12)

Il mio fascicolo 0 0