Project description
New tools to increase the security of DevOps
DevOps helps increase an organisation’s ability to deliver applications and services at high velocity. It aims to shorten the systems development life cycle and provide continuous delivery with high-quality software. Current systems development practices are increasingly based on off-the-shelf and legacy components, which make such systems prone to security vulnerabilities. Since DevOps is promoting frequent software deliveries, verification artefacts should be updated in a timely fashion to cope with the pace of the process. The EU-funded VeriDevOps project plans to develop methods and tools that provide a faster feedback loop for verifying the security requirements – confidentiality, integrity, availability, authentication and authorisation – in large-scale cyber-physical systems.
Objective
VeriDevOps is about fast, flexible system engineering that efficiently integrates development, delivery, and operations, thus aiming at quality deliveries with short cycle time to address ever evolving challenges.
Current system development practices are increasingly based on using both off-the-shelf and legacy components which make such systems prone to security vulnerabilities.
Since DevOps is promoting frequent software deliveries, verification methods artifacts should be updated in a timely fashion to cope with the pace of the process. VeriDevOps aims at providing faster feedback loop for verifying the security requirements i.e. confidentiality, integrity, availability, authentication, authorization and other quality attributes of large scale cyber-physical systems. VeriDevOps is focusing on optimizing the security verification activities, by automatically creating verifiable models directly from security requirements, and using these models to check security properties on design models and generate artefacts (such as tests or monitors) that can be used (later on) in the DevOps process. More concretely, we will develop methods and tools for: 1) creating security models from textual specifications using natural language processing, 2) automatic security test creation from security models using model-based testing and model-based mutation testing techniques and 3) generating (intelligent/adaptive, ML-based) security monitors for the operational phases. This brings together early security verification through formal modelling as well as test generation, selection, execution and analysis capabilities to enable companies to deliver quality systems with confidence in a fast-paced DevOps environment. Overall, VeriDevOps is using the results of formal verification of security requirements and design models created during the analysis and design phase for test and monitor generation to be used to enhance the feedback mechanisms during development and operation phases.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- natural sciences computer and information sciences software
- natural sciences biological sciences genetics mutation
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.2.1.1. - INDUSTRIAL LEADERSHIP - Leadership in enabling and industrial technologies - Information and Communication Technologies (ICT)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
RIA - Research and Innovation action
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-ICT-2018-20
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
722 20 VASTERAAS
Sweden
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.