Description du projet
Former les algorithmes de reconnaissance vocale à parler plus de langues
Dites bonjour à Siri d’Apple, à Echo d’Amazon et à l’assistant de Google. Mais dans quelle langue? Ces systèmes de dialogue statistique basés sur les tâches (SDS pour statistical dialogue systems) ne sont pas disponibles dans toutes les langues. Cela limite la portée globale de l’intelligence artificielle (IA) conversationnelle. Le projet MultiConvAI, financé par l’UE, développera le premier prototype de système permettant d’élargir l’IA conversationnelle à plusieurs langues. Basé sur une nouvelle méthodologie qui apprend les représentations multilingues des mots, ce nouveau système utilisera un processus appelé spécialisation sémantique. Le projet développera des modules de compréhension du langage naturel (NLU pour Natural Language Understanding) pour les SDS grâce à une spécialisation sémantique plus performante basée sur une formation commune multi-sources et multi-cibles. Il se concentrera également sur des langues typologiquement variées.
Objectif
In recent past, Conversational Artificial Intelligence (AI) has made major advances, thanks to the availability of big data and increasingly powerful deep learning. Task-based statistical dialogue systems (SDS) are now viable, embedded in popular commercial applications (e.g. the Apple’s Siri, Amazon’s Echo, Google’s Assistant) and cost-effective in many scenarios (e.g. customer support, call centre service, searching, booking). Yet current SDSs are only available for a handful of resource-rich languages, leaving the majority of the worlds languages and their speakers behind. Our project will develop the first prototype system for scaling conversational AI to multiple languages. This will be based on new methodology that learns multilingual word representations (i.e. embeddings, WEs) without the need for expensive training data, using a process called semantic specialisation that complements WEs with common-sense and linguistic knowledge in external knowledge graphs. Building on our promising pilot studies, we will develop Natural Language Understanding (NLU) modules for SDS via 1) more effective semantic specialisation based on joint multi-source multi-target training; and 2) focus on typologicallydiverse languages. We foresee a pioneering use of selective sharing and structural adaptation for obtaining WEs and optimisation for the target languages guided by typological knowledge. The best resulting technology will be integrated in a demo prototype system which users and industries can deploy to generate multilingual NLU input for more widely portable SDS. Since we also plan to explore the possibility to form a start-up company, we will use the system to demonstrate the potential to our network of industry contacts and potential customers. On a larger scale, extending the multilingual scope of SDSs can have major socioeconomic benefits: it can broaden the global reach of conversational AI and it can enhance its commercial viability.
Champ scientifique (EuroSciVoc)
CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN. Voir: Le vocabulaire scientifique européen.
CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN. Voir: Le vocabulaire scientifique européen.
- sciences naturelles informatique et science de l'information science des données mégadonnées
- sciences naturelles informatique et science de l'information ingénierie de la connaissance
- sciences naturelles informatique et science de l'information intelligence artificielle apprentissage automatique apprentissage profond
Vous devez vous identifier ou vous inscrire pour utiliser cette fonction
Nous sommes désolés... Une erreur inattendue s’est produite.
Vous devez être authentifié. Votre session a peut-être expiré.
Merci pour votre retour d'information. Vous recevrez bientôt un courriel confirmant la soumission. Si vous avez choisi d'être informé de l'état de la déclaration, vous serez également contacté lorsque celui-ci évoluera.
Programme(s)
Programmes de financement pluriannuels qui définissent les priorités de l’UE en matière de recherche et d’innovation.
Programmes de financement pluriannuels qui définissent les priorités de l’UE en matière de recherche et d’innovation.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
PROGRAMME PRINCIPAL
Voir tous les projets financés dans le cadre de ce programme
Thème(s)
Les appels à propositions sont divisés en thèmes. Un thème définit un sujet ou un domaine spécifique dans le cadre duquel les candidats peuvent soumettre des propositions. La description d’un thème comprend sa portée spécifique et l’impact attendu du projet financé.
Les appels à propositions sont divisés en thèmes. Un thème définit un sujet ou un domaine spécifique dans le cadre duquel les candidats peuvent soumettre des propositions. La description d’un thème comprend sa portée spécifique et l’impact attendu du projet financé.
Régime de financement
Régime de financement (ou «type d’action») à l’intérieur d’un programme présentant des caractéristiques communes. Le régime de financement précise le champ d’application de ce qui est financé, le taux de remboursement, les critères d’évaluation spécifiques pour bénéficier du financement et les formes simplifiées de couverture des coûts, telles que les montants forfaitaires.
Régime de financement (ou «type d’action») à l’intérieur d’un programme présentant des caractéristiques communes. Le régime de financement précise le champ d’application de ce qui est financé, le taux de remboursement, les critères d’évaluation spécifiques pour bénéficier du financement et les formes simplifiées de couverture des coûts, telles que les montants forfaitaires.
ERC-POC-LS - ERC Proof of Concept Lump Sum Pilot
Voir tous les projets financés dans le cadre de ce programme de financement
Appel à propositions
Procédure par laquelle les candidats sont invités à soumettre des propositions de projet en vue de bénéficier d’un financement de l’UE.
Procédure par laquelle les candidats sont invités à soumettre des propositions de projet en vue de bénéficier d’un financement de l’UE.
(s’ouvre dans une nouvelle fenêtre) ERC-2020-PoC
Voir tous les projets financés au titre de cet appelInstitution d’accueil
La contribution financière nette de l’UE est la somme d’argent que le participant reçoit, déduite de la contribution de l’UE versée à son tiers lié. Elle prend en compte la répartition de la contribution financière de l’UE entre les bénéficiaires directs du projet et d’autres types de participants, tels que les participants tiers.
CB2 1TN CAMBRIDGE
Royaume-Uni
Les coûts totaux encourus par l’organisation concernée pour participer au projet, y compris les coûts directs et indirects. Ce montant est un sous-ensemble du budget global du projet.