Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Collaborative AI Counters Hate

Project description

Humans and AI in the fight against digital hate and disinformation

In 2016, the European Commission launched the Code of Conduct together with major IT companies in an effort to respond rapidly to the proliferation of hate speech online. In this fight against online hate speech, the EU-funded AI4Dignity project will investigate the role of artificial intelligence (AI). While AI can be used to detect, decelerate and remove online extreme speech, this hinges on the quality, scope and inclusivity of training data sets. There is also a lack of procedural guidelines and frameworks. As such, the project will develop an innovative solution of collaborative bottom-up coding. It will move beyond keyword-based detection systems. The AI4Dignity solution will use a community-based classification approach that identifies fact checkers as critical human interlocutors in the fight against digital hate and disinformation.

Objective

Online hate speech and disinformation have emerged as a major problem for democratic societies worldwide. Governments, companies and civil society groups have responded to this phenomenon by increasingly turning to Artificial Intelligence (AI) as a tool that can detect, decelerate and remove online extreme speech. However, such efforts confront many challenges. One of the key challenges is the quality, scope, and inclusivity of training data sets. The second challenge is the lack of procedural guidelines and frameworks that can bring cultural contextualization to these systems. Lack of cultural contextualization has resulted in false positives, over-application and systemic bias. The ongoing ERC project has identified the need for a global comparative framework in AI-assisted solutions in order to address cultural variation, since there is no catch-all algorithm that can work for different contexts. Following this, the proposed project will address major challenges facing AI assisted extreme speech moderation by developing an innovative solution of collaborative bottom-up coding. The model, “AI4Dignity”, moves beyond keyword-based detection systems by pioneering a community-based classification approach. It identifies fact-checkers as critical human interlocutors who can bring cultural contextualization to AI-assisted speech moderation in a meaningful and feasible manner. AI4Dignity will be a significant step towards setting procedural benchmarks to operationalize “the human in the loop” principle and bring inclusive training datasets for AI systems tackling urgent issues of digital hate and disinformation.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

ERC-POC - Proof of Concept Grant

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) ERC-2020-PoC

See all projects funded under this call

Host institution

LUDWIG-MAXIMILIANS-UNIVERSITAET MUENCHEN
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 150 000,00
Address
GESCHWISTER SCHOLL PLATZ 1
80539 MUNCHEN
Germany

See on map

Region
Bayern Oberbayern München, Kreisfreie Stadt
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data

Beneficiaries (1)

My booklet 0 0