Project description
Novel algorithms automate and enhance image analysis of nanosized objects
Electron microscopy (EM) harnesses a beam of electrons rather than visible light to magnify an object's image. This technology has enabled us to investigate even nanosized objects, providing a new window on the world of biological and non-biological specimens. The next great frontier is finding ways to analyse all the information now available in a standardised way that is also speedy and efficient, extracting the information of interest. Recent advancements in microscopy basically make it a necessity. EM output data are in digital format, logically lending itself to computerised and automated analysis. The EU-funded STARE project is developing a software package to make analysing those huge data sets possible.
Objective
In recent years, the analysis of large data sets is becoming increasingly important in the fields of material science and engineering. There is a strong demand for real-time automated identification algorithms in electron microscopy (EM) for the analysis of atomic-structure, phases, and defects. Unfortunately, it is non-trivial to obtain or extract meaningful scientific information from raw EM output digital data. It requires a tedious process of filtering/fitting and the expertise of a seasoned microscopist. With the rapid development of information technology and computer science, automated computer-assisted analysis of electron microscopy images/data is becoming a reality. In the past decade, different techniques have been developed and applied to digital data analysis. Meanwhile, the rapid development of novel microscopy techniques and instrumentation, e.g. in situ/operando and pixelated detector-based techniques, require high-speed data execution and analysis. Currently, several groups worldwide are concentrating their efforts into implementing machine learning and deep learning algorithms for image/data analysis. However, this is still a very undeveloped direction in the field of electron microscopy for materials science, especially in Europe. According to the Digital Transformation Monitor, artificial intelligence-based technologies will play a major role in future economy. The ability to analyse levels of data that are beyond human comprehension will allow business to personalize experiences, customize products and services and identify growth opportunities with a speed and accuracy that has never been possible before. The objective of this PoC is to generate an innovative software package that enables the analysis of large sets of EM data (i) at high throughput with (ii) low costs, in (iii) a standardized approach and (iv) under operando conditions, based on advanced machine learning algorithms.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences computer and information sciences data science
- natural sciences computer and information sciences software
- natural sciences physical sciences optics microscopy electron microscopy
- natural sciences computer and information sciences artificial intelligence machine learning deep learning
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
ERC-POC-LS - ERC Proof of Concept Lump Sum Pilot
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2020-PoC
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
64289 DARMSTADT
Germany
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.