Skip to main content
Przejdź do strony domowej Komisji Europejskiej (odnośnik otworzy się w nowym oknie)
polski polski
CORDIS - Wyniki badań wspieranych przez UE
CORDIS

Machine learning based Software Toolkit for Automated identification in atomic-REsolution operando nanoscopy

Opis projektu

Nowe algorytmy automatyzacji i ulepszania analizy obrazów obiektów w nanoskali

Mikroskopia elektronowa daje powiększony obraz obiektu dzięki wykorzystaniu wiązki elektronów, a nie światła widzialnego. Dzięki niej zdołaliśmy przeprowadzić badanie obiektów w nanoskali, co otworzyło nowe okno na świat badań z dziedziny biologii i innych nauk. Kolejną wielką granicą, którą chcielibyśmy przekroczyć, jest odkrycie metody analizy wszystkich dostępnych obecnie informacji w sposób ustandaryzowany, który byłby przy tym szybki, skuteczny i pozwalałby wyodrębniać interesujące informacje. Najnowsze postępy na polu mikroskopii sprawiają, że z kaprysu stało się to koniecznością. Dane wyjściowe uzyskiwane z mikroskopów elektronowych są zapisywane w formacie cyfrowym, co w naturalny sposób skłania do prowadzenia zautomatyzowanej analizy za pomocą dostępnych narzędzi informatycznych. W ramach finansowanego przez UE projektu STARE powstaje pakiet oprogramowania umożliwiający analizę tak olbrzymich zbiorów danych.

Cel

In recent years, the analysis of large data sets is becoming increasingly important in the fields of material science and engineering. There is a strong demand for real-time automated identification algorithms in electron microscopy (EM) for the analysis of atomic-structure, phases, and defects. Unfortunately, it is non-trivial to obtain or extract meaningful scientific information from raw EM output digital data. It requires a tedious process of filtering/fitting and the expertise of a seasoned microscopist. With the rapid development of information technology and computer science, automated computer-assisted analysis of electron microscopy images/data is becoming a reality. In the past decade, different techniques have been developed and applied to digital data analysis. Meanwhile, the rapid development of novel microscopy techniques and instrumentation, e.g. in situ/operando and pixelated detector-based techniques, require high-speed data execution and analysis. Currently, several groups worldwide are concentrating their efforts into implementing machine learning and deep learning algorithms for image/data analysis. However, this is still a very undeveloped direction in the field of electron microscopy for materials science, especially in Europe. According to the Digital Transformation Monitor, artificial intelligence-based technologies will play a major role in future economy. The ability to analyse levels of data that are beyond human comprehension will allow business to personalize experiences, customize products and services and identify growth opportunities with a speed and accuracy that has never been possible before. The objective of this PoC is to generate an innovative software package that enables the analysis of large sets of EM data (i) at high throughput with (ii) low costs, in (iii) a standardized approach and (iv) under operando conditions, based on advanced machine learning algorithms.

Dziedzina nauki (EuroSciVoc)

Klasyfikacja projektów w serwisie CORDIS opiera się na wielojęzycznej taksonomii EuroSciVoc, obejmującej wszystkie dziedziny nauki, w oparciu o półautomatyczny proces bazujący na technikach przetwarzania języka naturalnego. Więcej informacji: Europejski Słownik Naukowy.

Aby użyć tej funkcji, musisz się zalogować lub zarejestrować

Program(-y)

Wieloletnie programy finansowania, które określają priorytety Unii Europejskiej w obszarach badań naukowych i innowacji.

Temat(-y)

Zaproszenia do składania wniosków dzielą się na tematy. Każdy temat określa wybrany obszar lub wybrane zagadnienie, których powinny dotyczyć wnioski składane przez wnioskodawców. Opis tematu obejmuje jego szczegółowy zakres i oczekiwane oddziaływanie finansowanego projektu.

System finansowania

Program finansowania (lub „rodzaj działania”) realizowany w ramach programu o wspólnych cechach. Określa zakres finansowania, stawkę zwrotu kosztów, szczegółowe kryteria oceny kwalifikowalności kosztów w celu ich finansowania oraz stosowanie uproszczonych form rozliczania kosztów, takich jak rozliczanie ryczałtowe.

ERC-POC-LS - ERC Proof of Concept Lump Sum Pilot

Wyświetl wszystkie projekty finansowane w ramach tego programu finansowania

Zaproszenie do składania wniosków

Procedura zapraszania wnioskodawców do składania wniosków projektowych w celu uzyskania finansowania ze środków Unii Europejskiej.

(odnośnik otworzy się w nowym oknie) ERC-2020-PoC

Wyświetl wszystkie projekty finansowane w ramach tego zaproszenia

Instytucja przyjmująca

TECHNISCHE UNIVERSITAT DARMSTADT
Wkład UE netto

Kwota netto dofinansowania ze środków Unii Europejskiej. Suma środków otrzymanych przez uczestnika, pomniejszona o kwotę unijnego dofinansowania przekazanego powiązanym podmiotom zewnętrznym. Uwzględnia podział unijnego dofinansowania pomiędzy bezpośrednich beneficjentów projektu i pozostałych uczestników, w tym podmioty zewnętrzne.

€ 150 000,00
Koszt całkowity

Ogół kosztów poniesionych przez organizację w związku z uczestnictwem w projekcie. Obejmuje koszty bezpośrednie i pośrednie. Kwota stanowi część całkowitego budżetu projektu.

Brak danych

Beneficjenci (1)

Moja broszura 0 0