Skip to main content
Weiter zur Homepage der Europäischen Kommission (öffnet in neuem Fenster)
Deutsch Deutsch
CORDIS - Forschungsergebnisse der EU
CORDIS

Machine learning based Software Toolkit for Automated identification in atomic-REsolution operando nanoscopy

Projektbeschreibung

Neuartige Algorithmen zur Automatisierung und Verbesserung von Bildanalysen nanometergroßer Objekte

Die Elektronenmikroskopie nutzt einen Elektronenstrahl statt sichtbaren Lichts, um das Bild eines Objekts zu vergrößern. Diese Technologie hat uns ermöglicht, sogar nanometergroße Objekte zu untersuchen, und uns neue Einblicke in die Welt biologischer und nicht biologischer Proben verschafft. Das nächste große Hindernis ist, Möglichkeiten zu finden, alle diese jetzt verfügbaren Daten auf standardisierte, aber auch schnelle und effiziente Weise zu analysieren, um die tatsächlich relevanten Daten zu extrahieren. Aktuelle Fortschritte in der Mikroskopie machen solche Verfahren praktisch unerlässlich. Die Ausgangsdaten von Elektronenmikroskopen haben ein digitales Format, das sich von Natur aus für computergestützte und automatisierte Analysen anbietet. Das EU-finanzierte Projekt STARE entwickelt ein Software-Paket, das die Analyse dieser riesigen Datenmengen möglich machen soll.

Ziel

In recent years, the analysis of large data sets is becoming increasingly important in the fields of material science and engineering. There is a strong demand for real-time automated identification algorithms in electron microscopy (EM) for the analysis of atomic-structure, phases, and defects. Unfortunately, it is non-trivial to obtain or extract meaningful scientific information from raw EM output digital data. It requires a tedious process of filtering/fitting and the expertise of a seasoned microscopist. With the rapid development of information technology and computer science, automated computer-assisted analysis of electron microscopy images/data is becoming a reality. In the past decade, different techniques have been developed and applied to digital data analysis. Meanwhile, the rapid development of novel microscopy techniques and instrumentation, e.g. in situ/operando and pixelated detector-based techniques, require high-speed data execution and analysis. Currently, several groups worldwide are concentrating their efforts into implementing machine learning and deep learning algorithms for image/data analysis. However, this is still a very undeveloped direction in the field of electron microscopy for materials science, especially in Europe. According to the Digital Transformation Monitor, artificial intelligence-based technologies will play a major role in future economy. The ability to analyse levels of data that are beyond human comprehension will allow business to personalize experiences, customize products and services and identify growth opportunities with a speed and accuracy that has never been possible before. The objective of this PoC is to generate an innovative software package that enables the analysis of large sets of EM data (i) at high throughput with (ii) low costs, in (iii) a standardized approach and (iv) under operando conditions, based on advanced machine learning algorithms.

Wissenschaftliches Gebiet (EuroSciVoc)

CORDIS klassifiziert Projekte mit EuroSciVoc, einer mehrsprachigen Taxonomie der Wissenschaftsbereiche, durch einen halbautomatischen Prozess, der auf Verfahren der Verarbeitung natürlicher Sprache beruht. Siehe: Das European Science Vocabulary.

Sie müssen sich anmelden oder registrieren, um diese Funktion zu nutzen

Programm/Programme

Mehrjährige Finanzierungsprogramme, in denen die Prioritäten der EU für Forschung und Innovation festgelegt sind.

Thema/Themen

Aufforderungen zur Einreichung von Vorschlägen sind nach Themen gegliedert. Ein Thema definiert einen bestimmten Bereich oder ein Gebiet, zu dem Vorschläge eingereicht werden können. Die Beschreibung eines Themas umfasst seinen spezifischen Umfang und die erwarteten Auswirkungen des finanzierten Projekts.

Finanzierungsplan

Finanzierungsregelung (oder „Art der Maßnahme“) innerhalb eines Programms mit gemeinsamen Merkmalen. Sieht folgendes vor: den Umfang der finanzierten Maßnahmen, den Erstattungssatz, spezifische Bewertungskriterien für die Finanzierung und die Verwendung vereinfachter Kostenformen wie Pauschalbeträge.

ERC-POC-LS - ERC Proof of Concept Lump Sum Pilot

Alle im Rahmen dieses Finanzierungsinstruments finanzierten Projekte anzeigen

Aufforderung zur Vorschlagseinreichung

Verfahren zur Aufforderung zur Einreichung von Projektvorschlägen mit dem Ziel, eine EU-Finanzierung zu erhalten.

(öffnet in neuem Fenster) ERC-2020-PoC

Alle im Rahmen dieser Aufforderung zur Einreichung von Vorschlägen finanzierten Projekte anzeigen

Gastgebende Einrichtung

TECHNISCHE UNIVERSITAT DARMSTADT
Netto-EU-Beitrag

Finanzieller Nettobeitrag der EU. Der Geldbetrag, den der Beteiligte erhält, abzüglich des EU-Beitrags an mit ihm verbundene Dritte. Berücksichtigt die Aufteilung des EU-Finanzbeitrags zwischen den direkten Begünstigten des Projekts und anderen Arten von Beteiligten, wie z. B. Dritten.

€ 150 000,00
Adresse
KAROLINENPLATZ 5
64289 DARMSTADT
Deutschland

Auf der Karte ansehen

Region
Hessen Darmstadt Darmstadt, Kreisfreie Stadt
Aktivitätstyp
Higher or Secondary Education Establishments
Links
Gesamtkosten

Die Gesamtkosten, die dieser Organisation durch die Beteiligung am Projekt entstanden sind, einschließlich der direkten und indirekten Kosten. Dieser Betrag ist Teil des Gesamtbudgets des Projekts.

Keine Daten

Begünstigte (1)

Mein Booklet 0 0