Project description
Validating an autonomous robot skill learning system
With robotics technologies advancing fast, numerous sectors are embracing these new devices. One of these is the industrial sector that benefits from industrial robots which have been built to automatically repeat several tasks thousands of times. What about programming robots to perform one complex motor task? Unfortunately, this is challenging and remains time-consuming and expensive. The EU-funded AssemblySkills project aims to overcome this challenge by validating an autonomous skill learning system that would allow industrial robots to obtain a multitude of motor skills at lower cost and in less time.
Objective
Present-day industrial robots are made for the purpose of repeating several tasks thousands of times. What the
manufacturing industry needs instead is a robot that can do thousands of tasks, a few times. Programming a robot to solve
just one complex motor task has remained a challenging, costly and time-consuming task. In fact, it has become the key
bottleneck in industrial robotics. Empowering robots with the ability to autonomously learn such tasks is a promising
approach, and, in theory, machine learning has promised fully adaptive control algorithms which learn both by observation
and trial-and-error. However, to date, learning techniques have yet to fulfil this promise, as only few methods manage to
scale into the high-dimensional domains of manipulator robotics, or even the new upcoming trend of collaborative robots.
The goal of the AssemblySkills ERC PoC is to validate an autonomous skill learning system that enables industrial robots to
acquire and improve a rich set of motor skills. Using structured, modular control architectures is a promising concept to scale
robot learning to more complex real-world tasks. In such a modular control architecture, elemental building blocks – called
movement primitives, need to be adapted, sequenced or co-activated simultaneously. Within the ERC PoC AssemblySkills,
our goal is to group these modules into an industry-scale complete software package that can enable industrial robots to
learn new skills (particularly in assembly tasks). The value proposition of our ERC PoC is a cost-effective, novel machine
learning system that can unlock the potential of manufacturing robots by enabling them to learn to select, adapt and
sequence parametrized building blocks such as movement primitives. Our approach is unique in the sense that it can
acquire more than just a single desired trajectory as done in competing approaches, capable of save policy adaptation,
requires only little data and can explain the solution to the robot operator.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- natural sciencescomputer and information sciencessoftware
- engineering and technologyelectrical engineering, electronic engineering, information engineeringelectronic engineeringrobotics
- natural sciencescomputer and information sciencesartificial intelligencemachine learning
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Funding Scheme
ERC-POC - Proof of Concept GrantHost institution
64289 Darmstadt
Germany