Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Highly multiplexed, quantitative epigenetic profiling

Project description

A platform for epigenetic drug profiling

Nearly 90 % of drug candidates do not receive regulatory approval due to unexpected toxicity in humans. Considering that these drugs have undergone extensive animal testing before entering Phase I clinical trials, this clearly highlights the importance of improved human cell-based assays. Epigenetic alterations are increasingly recognised drug side-effects. The scope of the EU-funded hmqChIP project is to develop a highly multiplexed, quantitative, chromatin immunoprecipitation sequencing technology (hmqChIP) for screening the epigenetic on- and off-target effects of drugs. The method will be commercialised to provide a platform for high-throughput screening of drugs against various epigenetic markers. The project will provide important insight into the understudied effects of drugs on the human epigenome.

Objective

Here, we develop a highly multiplexed, quantitative, ChIP-Seq technology (hmqChIP-Seq) for commercial exploitation in high-throughput profiling of epigenetic drug on- and off-target effects. Screening efficacy and toxicology of drug candidates in early stages of development has been recognized to be an essential part of drug screening. 90% of all Phase I drug candidates do not reach FDA approval and it is estimated that a quarter of failures relates to unexpected toxicity in humans. This is stunning given that all Phase I drugs have undergone animal-heavy battery of toxicologic tests and showcases the importance of expanding the screening capabilities for drug efficacy and toxicology in human cell-based assays, be it standard culture, organoids or engineered tissues. We believe that the interaction of drugs with the epigenome is an understudied/undervalued area of pre-clinical testing and epigenetic drug profiling will be key in predicting long term outcome in humans. With hmqChIP-Seq, 96 or more drug conditions can be screened against 24 or more epigenomic markers, such as histone or DNA post-translational modifications using specific antibodies and next-generation sequencing read-out. The method development aims to reduce the necessary input material to 1000 cells per condition, allowing it to be placed downstream of typical high-throughput cell-based drug screening assay in a variety of relevant human cell models, such as induced pluripotent stem cells, engineered tissues, organoids. The technology provides a framework for high-throughput, low cost, elucidation of short and long term action and toxicology of epigenetic drugs, or any drug candidate that could affect epigenetic markers.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

ERC-POC - Proof of Concept Grant

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) ERC-2020-PoC

See all projects funded under this call

Host institution

KAROLINSKA INSTITUTET
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 107 000,00
Address
NOBELS VAG 5
171 77 STOCKHOLM
Sweden

See on map

Region
Östra Sverige Stockholm Stockholms län
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data

Beneficiaries (2)

My booklet 0 0