Project description
Together but separate, ions and electrons join forces in innovative bioelectronics
Brain-computer interfaces (BCIs) enable the brain to communicate with an external device and vice versa. Some do one or the other, and some both. In medicine, they are helping people with impaired neuromuscular function get their limbs moving. They can also help people use systems other than their own natural ones, or eventually perhaps help us pay better attention at work or stop depressive thoughts. The EU-funded MITICS project will develop innovative organic electronics for healthcare applications using ion transport in transistors and electron transport long-distance. By reducing signal loss and promoting efficient long-range electron movement, scientists will maximise responses to very small signals and foster less invasive BCIs.
Objective
MITICS will interface living systems with modern microelectronics creating major breakthroughs notably in healthcare. We target alternative materials, advanced processing know-how and insights in device architectures to reach the following main twofold objective: Develop high-gain (> 15) and low-power complementary circuits based on Organic ElectroChemical Transistors (OECTs) to be used as amplifying transducers and design ultra-conformable OECT arrays that mitigate losses in signal quality (signal-to-noise ratio > 30dB higher than conventional electrodes), enabling less invasive Brain-Computer Interfaces (BCIs).
To reach this overarching objective, we envision a radically-new science-enabled technology that rests on a completely novel material engineering approach combined with highly advanced characterization methods. We will take advantage of a unique molecular architecture strategy spatially separating ion- and electron-transport pathways to ensure volumetric ion injection and transport in order to optimize the uptake and release of ions in the transistor channel and to promote efficient, long-range, electronic charge transport so as to maximize the response of the transistors to very weak signals.
In contrast to field-effect transistors, where charge flows through a thin interfacial region, the identifying characteristic of OECTs I s that polymer doping occurs over the entire volume of the channel, thereby allowing for large modulations in drain current at low-gate voltages. We will seek for organic material architectures maximizing the electronic mobility volumetric capacitance, develop high-gain and low-power complementary circuits based on printed OECTs, and use these as amplifying transducers in the context of Brain-Computer Interfaces (BCIs) that mitigate losses in signal quality due to the dura, the skull and the scalp, thereby enabling less-invasive BCIs.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
This project's classification has been validated by the project's team.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
This project's classification has been validated by the project's team.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.2. - EXCELLENT SCIENCE - Future and Emerging Technologies (FET)
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.1.2.1. - FET Open
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
RIA - Research and Innovation action
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-FETOPEN-2018-2020
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
3001 Leuven
Belgium
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.