Project description
Solid-state sources based on 2D materials could bridge the far-infrared gap
Generating light across the mid-infrared and terahertz regions of the spectrum has opened up a plethora of sensing applications and enabled the study of fundamental light-matter interactions. Quantum cascade lasers, which have recently moved from laboratory curiosity to industrial mainstay, have largely increased the range of practical applications. Despite their potential, they are limited in their ability to fill the far-infrared gap, namely the frequency region between 5 and 12 THz. The EXTREME-IR project aims to overcome this barrier by pioneering a radically new platform that exploits nonlinear optics in 2D materials to realise compact and coherent far-infrared sources.
Objective
The generation of light across the mid-infrared (MIR) and terahertz (THz) spectral regions of the electromagnetic spectrum has become an enabling technology, opening up a plethora of sensing applications across the sciences, as well as enabling the study of fundamental light-matter interactions. The key disruptor in this domain is the quantum cascade laser (QCL), which has grown from a laboratory curiosity to become an essential and practical optoelectronic source for a broad range of application sectors. The expansion of applications has, however, highlighted a technology gap lying between the MIR and THz domains, between 25 μm and 60 μm (5 – 12 THz), which is termed the far-infrared (FIR). Compared to neighbouring MIR and THz domains, the FIR lacks solid-state source technologies, despite the many sensing applications that such compact sources would enable.
In the EXTREME-IR project we will breakthrough this technological barrier by pioneering a radically new platform exploiting nonlinear optics in 2D materials to realize functionalized, compact and coherent FIR sources. 2D materials are becoming an important area of scientific interest owing to their unique optical and electronic properties, distinct from bulk materials and conventional semiconductors.This has led to an extensive applicative potential ranging from quantum optics at room temperature to the next generation of ultrafast electronics. However, they have not been exploited for the FIR. Here we will use the distinct phonon spectra and extreme nonlinearities in 2D transition metal dichalcogenides (TMDs) and Dirac matter (DM) to create new optoelectronic sources for the FIR. In particular, we will capitalize on the new phenomena of giant room temperature intra-excitonic nonlinearities and efficient high harmonic generation through plasmonics and resonators, combined with state-of-the-art QCLs as optical pump sources, to access and exploit this unexplored electromagnetic region fully for the first time.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.2. - EXCELLENT SCIENCE - Future and Emerging Technologies (FET)
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.1.2.1. - FET Open
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
RIA - Research and Innovation action
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-FETOPEN-2018-2020
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
75794 PARIS
France
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.