Skip to main content
Vai all'homepage della Commissione europea (si apre in una nuova finestra)
italiano italiano
CORDIS - Risultati della ricerca dell’UE
CORDIS
Contenuto archiviato il 2024-04-19

INNOVATIVE NON CRYOGENIC AIR SEPARATORS FOR OXYGEN NITROGEN ON SITE GENERATION (1ø) AQUACULTURE (2ø) GLASS INDUSTRY

Obiettivo


Three prototypes of innovative non-cryogenic on site oxygen generators, based on the application of pressure swing adsorption (PSA) technique were developed. Two end user applications, aquaculture industry and glass making industry, were explored.

According to the experimental results, in the first case the application of oxygen on-site generators, increases the amount of dissolved oxygen (DO) into the water where fishes live, improving the water quality and subsequently the fish density in the rearing units. Moreover the choice of the non-cryogenic way showed a positive effect on the cost connected to the investment and to the plant operation: in fact the non-cryogenic solution is more economic and easier to practise mainly in decentralised areas.

The second application consists of a conversion to oxygen-fuel combustion of a scaled furnace for glass smelting. This inhibits NOx emissions by replacing the air with oxygen, thus eliminating the nitrogen from the combustion atmosphere. This procedure gets a significant advantage provided that oxygen could be produced with a cheaper and simpler way than cryogenic process.

The design of the adsorption beds and of the generators was carried out with by means of a computer code developed and implemented for the project. For application in the glass industry, an integrated strategy was developed to predict the combustion of a fuel in oxygen. Particular attention was paid to monitor oxygen and NOx during the experiments.

An innovative polarographic sensor for oxygen monitoring was designed and manufactured: three electrodes were adopted to prevent phenomena of polarisation. Moreover, since the intensity of the polarographic current increases with the temperature, a proper termistor was inserted to compensate the effect.

The NOx monitoring system manufactured consists of an air exhauster which is linked with the diffusion collar to two electro-chemical capillary diffusion barrier gas sensors. The polluting exhausts are sucked up passing through a filter in order to prevent contamination or damage to the sensors. The NOx sensors are connected with a digital controller.
A research is proposed to develop innovative on-site Oxygen and Nitrogen generators based on Air Pressure Swinging through Phillipsite and Chabazite adsorpting media. The proposed process is cheaper than the cryogenic one (by the elimination of the costs of liquefaction and transportation). An on-site production of both Oxygen (90-93% purity) can be obtained with no additional need of purification. To most users, these purities are suitable to many processes formerly served by cryogenic products -including aqua culture, food preservation, pulp-and-paper, glass making, metal processing, petroleum refining. The non cryogenic process is valuable to foster the O2 and N2 use in decentralised areas and promoting gas use in developing Countries.

The research goal is the integration of several expertise's addressed to :

1) Improvement of the Aqua culture Industry productivity,
2) Reduction of NOx released by the furnaces of Glass Fibreglass Industry.

The major Research tasks are :

- characterisation of the adsorpting minerals,
- design and fabrication of three prototypes
- testing of the generators prototype performances

1) In two fish rearing units of Aqua culture Installations
2) In one glass furnace of Glass Industry.

(1) The adoption of pure oxygen in the fish rearing industry will reflect a saving up to 25% (fresh water) and 20% (salt water) and strong environmental advantages because the water can be recirculated inside the Aqua culture plant.
(2) By blending oxygen with any number of fuels, the oxy-fuel burners will produce a hotter flame which will lower the overall costs and reduce the NOx emissions, per ton of produced glass, from the present 4.5Kg to 0.9 Kg.

Campo scientifico (EuroSciVoc)

CORDIS classifica i progetti con EuroSciVoc, una tassonomia multilingue dei campi scientifici, attraverso un processo semi-automatico basato su tecniche NLP. Cfr.: Il Vocabolario Scientifico Europeo.

È necessario effettuare l’accesso o registrarsi per utilizzare questa funzione

Programma(i)

Programmi di finanziamento pluriennali che definiscono le priorità dell’UE in materia di ricerca e innovazione.

Argomento(i)

Gli inviti a presentare proposte sono suddivisi per argomenti. Un argomento definisce un’area o un tema specifico per il quale i candidati possono presentare proposte. La descrizione di un argomento comprende il suo ambito specifico e l’impatto previsto del progetto finanziato.

Invito a presentare proposte

Procedura per invitare i candidati a presentare proposte di progetti, con l’obiettivo di ricevere finanziamenti dall’UE.

Dati non disponibili

Meccanismo di finanziamento

Meccanismo di finanziamento (o «Tipo di azione») all’interno di un programma con caratteristiche comuni. Specifica: l’ambito di ciò che viene finanziato; il tasso di rimborso; i criteri di valutazione specifici per qualificarsi per il finanziamento; l’uso di forme semplificate di costi come gli importi forfettari.

CSC - Cost-sharing contracts

Coordinatore

Resource Group Integrator Srl
Contributo UE
Nessun dato
Indirizzo
Via Luigi Porta 12
27100 Pavia
Italia

Mostra sulla mappa

Costo totale

I costi totali sostenuti dall’organizzazione per partecipare al progetto, compresi i costi diretti e indiretti. Questo importo è un sottoinsieme del bilancio complessivo del progetto.

Nessun dato

Partecipanti (7)

Il mio fascicolo 0 0