Objetivo
Carotenoid market, uses and health benefits
Carotenoids are terpenoid pigments very widespread in nature. They are industrially
used as highly safe colourants of food and cosmetic preparations. In addition,
beta-caroten is the dietary precursor of vitamin A. The market for purified
carotenoids is growing rapidly and it already exceeds 100 million US$/yr. Over
90 % of the market is covered by expensive, chemically synthesized carotenoids,
the remainder being obtained through fermentation of fungi or extraction from
plants (e.g. paprika extract).
Carotenoid metabolites play also a role in aroma : the flavour of many plant
products, such as tomato and saffron, is due to volatile derivatives of the
xanthophyll oxidative metabolism. Consumers are becoming more
health-conscious, increasing the potential consumption of antioxidant carotenoids
in the diet. USDA and the US National Cancer Institute recommend a daily intake
of 4-6 mg/day beta-carotene. In developed countries we eat between 1 and 1,5
mg/day (Lachance, 1988), and in some third world countries this figure is below
0.5 mg/day. For the above reasons, the biotechnological production of carotenoid
metabolites has a high potential impact on the market of speciality products. The
same approach could solve the severe carotene shortages in some countries.
Measurable objectives
1. To enlarge the repertoire of available genes encoding specialized steps in
carotenoid metabolism, that would allow the engineering in crops or
microorganisms of high value compounds;
2. To produce, by genetic engineering of widely cultivated crops and
filamentous fungi (tomato, Phycomyces), high added value carotenoid
metabolites involved in food colour and aroma (zeaxanthin, astaxanthin,
crocetin, picrocrocin). To improve, by genetic engineering, the beta-carotene
(provitamin A) content of main crops (potato, rice);
3. To preliminarily assess the nutritional and agronomic qualities of the
engineered crops and fungi.
State of the art
Great progress has been made recently in the isolation of plant genes controlling
carotenoid biosynthesis (Bartley et al., 1994) (Fig. 1). All genes controlling the
synthesis of beta-carotene have been cloned and their regulation is under study.
Considerable part of this progress has been achieved under a current, EU-financed,
Biotechnology project which involves several world leading groups studying
carotenoid biosynthesis, including 5 of the 8 partners in the present proposal.
Techniques for the transformation of the proposed plants and fungi are well
developed. Preliminary modification of carotenoid metabolism in tomato, rice and
Phycomyces through genetic engineering has been achieved by some the partners.
Ámbito científico
- engineering and technologymaterials engineeringcolors
- medical and health sciencesmedical biotechnologygenetic engineering
- natural sciencesbiological sciencesmicrobiologymycology
- agricultural sciencesagriculture, forestry, and fisheriesagriculture
- engineering and technologyindustrial biotechnologybioprocessing technologiesfermentation
Convocatoria de propuestas
Data not availableRégimen de financiación
CSC - Cost-sharing contractsCoordinador
00100 Santa Maria di Galeria Roma
Italia