Skip to main content
Ir a la página de inicio de la Comisión Europea (se abrirá en una nueva ventana)
español español
CORDIS - Resultados de investigaciones de la UE
CORDIS
Contenido archivado el 2024-05-07

Chaotic dynamics of multi - dimensional hamiltonian systems and applications to partial differential equations of physical significance

Objetivo



Research objectives and content
The main purpose of this project is to investigate analytically and numerically the chaotic properties of multi-dimensional dynamical systems. In particular, we will study near-integrable discretizations of certain partial differential equations (pdes) of physical significance like the Nonlinear Schrodinger equation describing pulse transmission in optical fibers and the sine-Gordon equation monitoring the flux of supercontacting current in Josephson junctions.
Besides the relevance of our study to the continuum limit of the corresponding pdes, we will also analyze our systems as
multi-degree-of-freedom Hamiltonian lattice models. Thus we expect to obtain results concerning the existence and stability of localized oscillatory excitations called breathers, as well as investigate energy transport between interacting breathers.
Our basic analytical tools will be the application of invariant manifold theory, Mel'nikov analysis and 'horseshoe' dynamics to establish the occurrence of homoclinic chaos. We also intend to apply various other methods, like the implicit function theorem in the so-called anti-continuum limit which have recently proved very useful in the investigation of such breather solutions. Guided by our analytical results we also plan to carry out extensive numerical computations to study the stability of our localized oscillatory states and global behavior of these systems for very long times.
Training content (objective, benefit and expected impact)
My stay at Cambridge is expected to be of great benefit as it well enable me to work with outstanding researchers in the field of Hamiltonian Dynamics. Furthermore, my background in higher-dimensional Mel'nikov analysis, invariant manifold theory and pdes should be beneficial for the success of the proposed collaboration. It is expected that important results will be obtained towards a better understanding of the several open problems concerning chaos in multi-dimensional systems. Links with industry / industrial relevance (22)

Ámbito científico (EuroSciVoc)

CORDIS clasifica los proyectos con EuroSciVoc, una taxonomía plurilingüe de ámbitos científicos, mediante un proceso semiautomático basado en técnicas de procesamiento del lenguaje natural. Véas: El vocabulario científico europeo..

Para utilizar esta función, debe iniciar sesión o registrarse

Programa(s)

Programas de financiación plurianuales que definen las prioridades de la UE en materia de investigación e innovación.

Tema(s)

Las convocatorias de propuestas se dividen en temas. Un tema define una materia o área específica para la que los solicitantes pueden presentar propuestas. La descripción de un tema comprende su alcance específico y la repercusión prevista del proyecto financiado.

Convocatoria de propuestas

Procedimiento para invitar a los solicitantes a presentar propuestas de proyectos con el objetivo de obtener financiación de la UE.

Datos no disponibles

Régimen de financiación

Régimen de financiación (o «Tipo de acción») dentro de un programa con características comunes. Especifica: el alcance de lo que se financia; el porcentaje de reembolso; los criterios específicos de evaluación para optar a la financiación; y el uso de formas simplificadas de costes como los importes a tanto alzado.

RGI - Research grants (individual fellowships)

Coordinador

UNIVERSITY OF WARWICK
Aportación de la UE
Sin datos
Dirección
Gibbet Hill Road
CV4 7AL COVENTRY
Reino Unido

Ver en el mapa

Coste total

Los costes totales en que ha incurrido esta organización para participar en el proyecto, incluidos los costes directos e indirectos. Este importe es un subconjunto del presupuesto total del proyecto.

Sin datos
Mi folleto 0 0