Objective
As the environmental costs associated with fossil and nuclear fuels become more apparent, the case for clean energy sources, such as solar cells, becomes increasingly strong. The major problem with solar cells is the efficiency with which the light is converted into electrical energy and the fabrication costs. This research project directly addresses these problems by applying recent and revolutionary developments in silicon bipolar technology to the fabrication of silicon solar cells.
The results showed large reductions in series resistance of solar cells with polysilicon emitter technology contacts. The researchers demonstrated that a fluorine implant had a double effect on the performance of the cells: it reduced the series resistance and improved the passivation of the surface of the cell. Overall, an efficiency of 15.3% was achieved by using a back polysilicon contact.
The particular development of interest is the polysilicon emitter, which has led to a factor of more than five in circuit speed over the last ten years. The application of this technology to silicon solar cells should lead to significant improvements in efficiency. Preliminary calculations suggest improvements in the efficiency of state of the art solar cells. There is also no way of improving low recombination emitter design which would lead to large improvements. The concept underlying the low recombination polysilicon emitter is the minimization of all components of
recombination. In a state of the art polysilicon emitter two recombination terms generally dominate, namely recombination in the single crystal emitter and recombination at the polysilicon-silicon interface. The first term is minimized by using novel fabrication techniques to decrease the doping concentration in the single crystal emitter, thereby reducing Auger recombination. The second term is minimized by passivating the interface states using a technique recently developed at Southampton University. The application of this technique to bipolar transistors has led to world record gain transistors.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- engineering and technology environmental engineering energy and fuels renewable energy
- natural sciences chemical sciences inorganic chemistry halogens
- natural sciences chemical sciences inorganic chemistry metalloids
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Data not available
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Coordinator
08034 BARCELONA
Spain
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.