Objectif
Our proposed research lies at the interface of Geometry, Group Theory, Number Theory and Combinatorics. In recent years, striking results were obtained in those disciplines with the help of a surprise newcomer at the border between mathematics and logic: Model Theory. Bringing its unique point of view and its powerful formalism, Model Theory made a resounding entry into several different fields of mathematics. Here shedding new light on a classical phenomenon, there solving a long-standing open problem via a completely new method.
Recent examples of concrete mathematical problems where Model Theory interacted in a fruitful manner abound: the local version of Hilbert's 5th problem by Goldbring and van den Dries, Szemeredi's theorems in combinatorics and graph theory, the André-Oort conjecture in diophantine geometry (Pila, Wilkie, Zannier), etc. In this vein, and building on Hrushovski's model-theoretic work, Green, Tao and myself recently settled a conjecture of Lindenstrauss pertaining to the structure of approximate groups.
Our plan in this project is to put these methods into further use, to collaborate with model theorists, and to start looking through this prism at a small collection of familiar problems coming from combinatorics, group theory, analysis and spectral geometry of metric spaces, or from arithmetic geometry. Among them: extend our study of approximate groups to the general setting of locally compact groups, obtain uniform estimates on the spectrum of Cayley graphs of large finite groups, prove an analogue for character varieties of the Pink-Zilber conjectures in relation with rigidity theory for discrete subgroups of Lie groups, and clarify the links between uniform spectral gaps and height lower bounds in diophantine geometry with a view towards Lehmer's conjecture.
Champ scientifique (EuroSciVoc)
CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN. Voir: https://op.europa.eu/fr/web/eu-vocabularies/euroscivoc.
CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN. Voir: https://op.europa.eu/fr/web/eu-vocabularies/euroscivoc.
- sciences naturelles mathématiques mathématiques pures mathématiques discrètes logique mathématique
- sciences naturelles mathématiques mathématiques pures arithmétique
- sciences naturelles mathématiques mathématiques pures géométrie
- sciences naturelles mathématiques mathématiques pures mathématiques discrètes combinatoire
- sciences naturelles mathématiques mathématiques pures algèbre géométrie algébrique
Vous devez vous identifier ou vous inscrire pour utiliser cette fonction
Nous sommes désolés... Une erreur inattendue s’est produite.
Vous devez être authentifié. Votre session a peut-être expiré.
Merci pour votre retour d'information. Vous recevrez bientôt un courriel confirmant la soumission. Si vous avez choisi d'être informé de l'état de la déclaration, vous serez également contacté lorsque celui-ci évoluera.
Programme(s)
Programmes de financement pluriannuels qui définissent les priorités de l’UE en matière de recherche et d’innovation.
Programmes de financement pluriannuels qui définissent les priorités de l’UE en matière de recherche et d’innovation.
Thème(s)
Les appels à propositions sont divisés en thèmes. Un thème définit un sujet ou un domaine spécifique dans le cadre duquel les candidats peuvent soumettre des propositions. La description d’un thème comprend sa portée spécifique et l’impact attendu du projet financé.
Les appels à propositions sont divisés en thèmes. Un thème définit un sujet ou un domaine spécifique dans le cadre duquel les candidats peuvent soumettre des propositions. La description d’un thème comprend sa portée spécifique et l’impact attendu du projet financé.
Appel à propositions
Procédure par laquelle les candidats sont invités à soumettre des propositions de projet en vue de bénéficier d’un financement de l’UE.
Procédure par laquelle les candidats sont invités à soumettre des propositions de projet en vue de bénéficier d’un financement de l’UE.
ERC-2013-CoG
Voir d’autres projets de cet appel
Régime de financement
Régime de financement (ou «type d’action») à l’intérieur d’un programme présentant des caractéristiques communes. Le régime de financement précise le champ d’application de ce qui est financé, le taux de remboursement, les critères d’évaluation spécifiques pour bénéficier du financement et les formes simplifiées de couverture des coûts, telles que les montants forfaitaires.
Régime de financement (ou «type d’action») à l’intérieur d’un programme présentant des caractéristiques communes. Le régime de financement précise le champ d’application de ce qui est financé, le taux de remboursement, les critères d’évaluation spécifiques pour bénéficier du financement et les formes simplifiées de couverture des coûts, telles que les montants forfaitaires.
Institution d’accueil
Berlin
Les coûts totaux encourus par l’organisation concernée pour participer au projet, y compris les coûts directs et indirects. Ce montant est un sous-ensemble du budget global du projet.