CORDIS
EU research results

CORDIS

English EN
Connected Electric Vehicle Optimized for Life, Value, Efficiency and Range

Connected Electric Vehicle Optimized for Life, Value, Efficiency and Range

Objective

The current generation of electric vehicles have made significant progress during the recent years, however they have still not achieved the user acceptance needed to support broader main-stream market uptake. These vehicles are generally still too expensive and limited in range to be used as the first car for a typical family. Long charging times and uncertainties in range prediction are common as further barriers to broader market success. For this reason the CEVOLVER project takes a user-centric approach to create battery-electric vehicles that are usable for comfortable long day trips whilst the installed battery is dimensioned for affordability. Furthermore the vehicles will be designed to take advantage of future improvements in the fast-charging infrastructure that many countries are now planning. CEVOLVER tackles the challenge by making improvements in the vehicle itself to reduce energy consumption as well as maximizing the usage of connectivity for further optimization of both component and system design, as well as control and operating strategies. This will encompass measures that range from the on-board thermal management and vehicle energy management systems, to connectivity that supports range-prediction as a key element for eco-driving and eco-routing driver assistance. Within the project it will be demonstrated that long-trip are achievable even without further increases in battery size that would lead to higher cost. The driver is guided to fast-charging infrastructure along the route that ensures sufficient charging power is available along the route in order to complete the trip with only minimal additional time needed for the overall trip. The efficient transferability of the results to further vehicles is ensured by adopting a methodology that proves the benefit with an early assessment approach before implementation in OEM demonstrator vehicles.
Leaflet | Map data © OpenStreetMap contributors, Credit: EC-GISCO, © EuroGeographics for the administrative boundaries

Coordinator

FEV EUROPE GMBH

Address

Neuenhofstrasse 181
52078 Aachen

Germany

Activity type

Other

EU Contribution

€ 510 650

Participants (10)

Sort alphabetically

Sort by EU Contribution

Expand all

ROBERT BOSCH GMBH

Germany

EU Contribution

€ 718 506,25

FORD-WERKE GMBH

Germany

EU Contribution

€ 1 114 108,63

VOLVO PERSONVAGNAR AB

Sweden

IFP Energies nouvelles

France

EU Contribution

€ 535 158,75

RHEINISCH-WESTFAELISCHE TECHNISCHE HOCHSCHULE AACHEN

Germany

EU Contribution

€ 524 575

VRIJE UNIVERSITEIT BRUSSEL

Belgium

EU Contribution

€ 408 111

UNIRESEARCH BV

Netherlands

EU Contribution

€ 139 475

I2M UNTERNEHMENSENTWICKLUNG GMBH

Austria

EU Contribution

€ 112 962,50

ROBERT BOSCH AG

Austria

EU Contribution

€ 256 703,13

CENTRO RICERCHE FIAT SCPA

Italy

EU Contribution

€ 679 450

Project information

Grant agreement ID: 824295

Status

Ongoing project

  • Start date

    1 November 2018

  • End date

    30 April 2022

Funded under:

H2020-EU.3.4.

  • Overall budget:

    € 6 222 159,76

  • EU contribution

    € 4 999 700,26

Coordinated by:

FEV EUROPE GMBH

Germany