Objective
Conventional wind tunnels face physical limits matching Reynolds and Mach number ranges. Cryogenic wind tunnels, operating at temperatures as low as -163°C and with variable pressures, allow a realistic simulation of flight Reynolds and Mach numbers hence allowing a highly accurate flow simulation at flight cruise conditions. For a highly accurate measurement a highly accurate model is mandatory. This also applies to the mounting devices needed for holding the model in the test section. However, since real aircraft have no mounting devices it is crucial to understand and to minimise the effect of these necessary devices. FLIRET's objective is to improve the accuracy of performance measurements at flight Reynolds number in cryogenic wind tunnels. The project focuses intentionally on model mounting techniques under cryogenic conditions. Model mounting devices have a significant influence on high Reynolds number performance measurements, which are currently compensated by empirical correction methods. It is assumed that an accurate prediction of the aerodynamic performance in cruise may allow for up to 10% improvement in present state-of-the-art aircraft design. FLIRET will investigate several model-mounting alternatives and compare the devices with existing state of the art stings. This includes · Designing and manufacturing of several model mounting devices (stings) · Appling and harmonising CFD and prediction tools including the necessary meshes · Analysing the test results of each FLIRET work package · Analysing the applied model quality, manufacturing and handling strategies · Deriving recommendations for the industrial testing in cryogenic tunnels A large proportion of FLIRET's budget is used for testing in the European Transonic Wind (ETW) tunnel, the only major cryogenic facility in Europe. FLIRET's results will allow utilising cryogenic technology more efficiently and, hence, will increase the competitiveness of the aeronautics industry.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- engineering and technology mechanical engineering vehicle engineering aerospace engineering aircraft
- natural sciences physical sciences classical mechanics fluid mechanics fluid dynamics
- engineering and technology electrical engineering, electronic engineering, information engineering electronic engineering sensors
- engineering and technology mechanical engineering vehicle engineering aerospace engineering aeronautical engineering
- natural sciences earth and related environmental sciences atmospheric sciences meteorology atmospheric circulation atmospheric turbulence
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
FP6-2003-AERO-1
See other projects for this call
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Coordinator
HAMBURG
Germany
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.