Project description
Autonomous energy-efficient optical networks
Upcoming generations of mobile communication networks need to support the use of emerging technologies to meet a wide range of consumer and business demands, including real-time data transmission for mission-critical applications and transport of virtual and augmented reality services. The EU-funded SEASON project aims to design and validate an energy-saving optical network infrastructure that can support capabilities beyond 5G while taking into account flexibility. It proposes to take advantage of streaming telemetry and AI-based service management to achieve near real-time operations, with a distributed system based on multiple agents and closed control loops. The project will include an alliance of European telecom operators, system vendors, distinguished research centres and academia.
Objective
The goal of the SEASON project is to design and validate a sustainable transport network infrastructure able to support beyond 5G and new emerging services. The SEASON infrastructure will rely on the joint usage of Multi-Band (MB) and Space Division Multiplexing (SDM), spanning the access, aggregation, and metro/long-haul segments, supporting the requirements for x-haul, further integrating the packet/optical and computing layers, and targeting cost-effective capacity increase. A critical objective of such architecture is to ensure energy efficiency. SEASON will rely on power-efficient Digital Signal Processing (DSP), MBoverSDM optical switching, point-to-multipoint transceivers allowing traffic aggregation/router bypassing, and converged packet-optical solutions reducing the number of O/E/O conversions. Such complex infrastructure requires rethinking the control and orchestration systems towards autonomous optical networks, addressing not only the integration - in overarching control systems - of the Radio Access Network (RAN), access and transport segments but also adopting more agile DevOps methodologies. SEASON will leverage on cognitive networks powered by streaming telemetry, real-time network measurements and Artificial Intelligence/Machine Learning (AI/ML)-aided service management and orchestration for near-real time network operation, moving intelligence as close as possible to the data plane, and devising a distributed system based on multiple communicating agents and data-driven closed control loops.
SEASON will have a clear impact on the society, in a context with increased needs of connectivity and higher capacity demand required for services such as VR/AR.
The SEASON consortium includes major European telecom operators (Telefonica, TIM), major vendors (ADVA, Infinera P/G, Ericsson), three consolidated SMEs (Accelleran, Wings and WestAquila) and four top-reputed research centres and academia (CNIT, CTTC, Fraunhofer HHI, and UPC).
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
This project's classification has been validated by the project's team.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
This project's classification has been validated by the project's team.
- engineering and technology electrical engineering, electronic engineering, information engineering electronic engineering control systems
- engineering and technology electrical engineering, electronic engineering, information engineering electronic engineering signal processing
- natural sciences computer and information sciences artificial intelligence machine learning
- social sciences social geography transport sustainable transport
- engineering and technology electrical engineering, electronic engineering, information engineering information engineering telecommunications telecommunications networks optical networks fiber-optic network
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
HORIZON.2.4 - Digital, Industry and Space
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
HORIZON-JU-RIA - HORIZON JU Research and Innovation Actions
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) HORIZON-JU-SNS-2022
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
43124 Parma
Italy
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.