Objective
Temperature measurements are crucial in countless technological developments, accounting for 80% of the sensor market throughout the world. The pitfalls of temperature readouts at the biomedical battleground are mostly represented by the currently achievable spatial resolution. To address key issues, such as intracellular temperature fluctuations and in vivo thermal transients, a technique able to go clearly below 1 μm is highly and urgently needed, as the traditional contact-based sensors and near infrared thermometers are not suitable for measurements at that tight spatial range. To overcome these limitations requires a non-contact thermometry approach granted with sub-micrometer resolution, also providing real-time high relative thermal sensitivity values.
The goal of NanoTBTech is to develop a 2-D thermal bioimaging technology featuring sub-microscale resolution, based on nanothermometers and heater-thermometer nanostructures. We will design, synthetize, and bio-functionalize nontoxic luminescent nanostructures, operating essentially beyond 1000 nm, for in vivo nanothermometry and nanoheating. Furthermore, to monitor the temperature-dependent nanostructures’ luminescence we will develop a novel imaging system. The effective delivery of that major advance in 2-D thermal bioimaging will be implemented through two impactful biomedical showcases: highly spatially-modulated intracellular magnetic/optical hyperthermia and in vivo detection and tracking of cancer.
In the long-term, we foresee our technology having a broad impact on non-invasive clinical imaging and theranostics. For instance, the accurate measurement of temperature gradients´ sources will be an invaluable tool for real-time control of thermal therapies, thus making them harmless for the patient. Multiple conceptual breakthroughs can be further envisaged from the proposed 2D-thermal imaging system, credibly spreading its impact towards non-biomedical technological areas.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- engineering and technology electrical engineering, electronic engineering, information engineering electronic engineering sensors optical sensors
- natural sciences physical sciences optics microscopy
- medical and health sciences clinical medicine oncology
- medical and health sciences basic medicine pathology
- medical and health sciences basic medicine physiology
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.2. - EXCELLENT SCIENCE - Future and Emerging Technologies (FET)
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.1.2.1. - FET Open
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
RIA - Research and Innovation action
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-FETOPEN-2016-2017
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
3810-193 Aveiro
Portugal
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.