Project description
On the trail of novel theorems related to the Riemann–Roch theorem
The Riemann–Roch theorem has played a definitive role in complex analysis and algebraic geometry for more than 150 years. It was first proved by Riemann as Riemann's theorem in 1857 and modified shortly thereafter by Riemann's student Gustav Roch, with specific application to Riemann surfaces, one of the most important concepts in higher level mathematics. Since then, it has been generalised, and its applicability has increased even further. The EU-funded RRMAP project is exploring mathematical techniques based on discrete and integral versions of Riemann–Roch as well as other related theorems and their application to the solution of arithmetic problems.
Objective
Our project “Riemann-Roch and Motives for Arithmetic Problems” aims to develop techniques in the area of Motives and the Riemann-Roch to attack arithmetic problems. To be more concrete we aim to attack:
- The integral Riemann-Roch: At SGA VI Grothendieck developed his landmark Riemann-Roch result stating an integral version of it as an open question. Later on, research of Fulton, MacPherson and Pappas raised Grothendieck original conjecture to a more complete statement related to traces, which is known today only in the complex geometric setting. We aim to prove this conjecture in its full generality.
-The discrete Riemann-Roch: At SGA5 Grothendieck proved his wellknown Ogg-Shafarevich formula computing the Euler characteristic of a constructible sheaf over curve in terms of the genus, the Swan conductor and therank. This formula plays a central role in the original strategy to prove the Weyl conjectures. Grothendieck also conjectured that this formula would fit into a Riemann-Roch type theorem for the K-group of étale constructible sheaves and general schemes, which he called the “discrete Riemann-Roch”. We aim to attack this theorem from the motivic point of view.
-Intersection theory in the arithmetic setting: A major objective of Algebraic Geometry is to define a product algebraic cycles for
in the arithmetic setting. So far, this product has being defined with rational coefficients. The first definition, due to Gillet-Soulé, was achieved throughout the Adam’s operations, the Adams Riemann-Roch and the
Grothendieck-Riemann-Roch. We aim to explore some of Gillet-Soulé’s ideas and the arithmetic bivariant integral version of the Riemann-Roch to explore a definition of the intersection product of cycles after killing certain torsion on the Chow groups related to the codimension of the cycle
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences mathematics pure mathematics arithmetics
- natural sciences mathematics pure mathematics geometry
- natural sciences mathematics pure mathematics algebra algebraic geometry
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.1.3.2. - Nurturing excellence by means of cross-border and cross-sector mobility
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-MSCA-IF-2019
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
28006 MADRID
Spain
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.