Modelle der Strömungslehre für Unterwasserstrukturen
Im Laufe der letzten Jahrhunderte haben Forscher aus ganz Europa - von England (William Froude) über Frankreich (Augustin Cauchy) bis hin zu Deutschland (William Weber) - einen bedeutenden Beitrag zur Theorie der Strömungslehre geleistet. Die SDRG aus Southampton wollte bestimmen, welche Theorie der Strömungslehre am besten zur Modellierung von Unterwasserstrukturen (Low Crested Structures – LCS) geeignet ist. LCS sind künstlich errichtete Wellenbrecher zum Schutz des Küstenstreifens vor den Gefahren der Erosion und Überflutung. LCS stellen für die Forscher aus dem Bereich der Strömungslehre eine besondere Herausvorderung dar. Zum einen müssen sie sich mit allen drei Materialphasen gleichzeitig befassen: gasförmig (die Luft), flüssig (das Meerwasser) und fest (die LCS). Deshalb trifft in bestimmten Situationen die Beschränkung der Komprimierbarkeit zu, in anderen wiederum nicht. Darüber hinaus kommen zahlreiche Kräfte ins Spiel, deren Bedeutung stark vom dimensionalen Maßstab abhängt. Eine weitere Besonderheit, die beachtet werden muss, sind die unterschiedlichen physikalischen Eigenschaften von Meerwasser und Süßwasser. Schließlich wird die Strömungsdynamik durch die an den LCS angesiedelten Meereslebewesen noch komplizierter. Deshalb müssen das Modell und die ihm zu Grunde liegende Theorie flexibel genug sein, um sich diesen unterschiedlichen Umständen anpassen zu können. Tatsächlich fand die SDRG aus Southampton heraus, dass keine der Theorien allgemein gültig ist und unter allen Umständen erfolgreich angewendet werden kann. Es wurden verschiedene Ansätze zur Maßstabsmodellierung getestet – von Froude über Cauchy bis hin zu Weber und auch Reynolds. Im Großen und Ganzen bot die Froudsche Theorie die besten Gesamtergebnisse. Ein weiteres wichtiges Ergebnis der Forschung war die Identifizierung eines Parameters, der die Analyse impulsiver Ereignisse unterstützt. Mit Hinblick auf die LCS handelt es sich bei den über den LCS zusammenschlagenden Wellen um die am häufigsten auftretenden impulsiven Ereignisse. Der Parameter wird unter Einbezug der Druckunterschiede geteilt durch die Dichte an der betrachteten Stelle erzeugt. Laboruntersuchungen zeigten Unstimmigkeiten zwischen den Modellen und den Daten, die im Feld von den LCS gesammelt wurden, und ließen damit einmal mehr erkennen, dass Modelle keine perfekte Analogie zur realen Welt sind. So stellten sich beispielsweise bestimmte im Labor laminare Strömungsbedingungen in der Wirklichkeit als turbulent heraus. Trotz dieser Einschränkungen erzielte die Forschungsarbeit neue bedeutende Erkenntnisse auf diesem speziellen Gebiet. Ein Bericht, der diese Ergebnisse zusammenfasst, wird derzeit veröffentlicht und richtet sich an potenzielle Nutzer dieser Informationen wie lokale Behörden, Bauunternehmen und ökologische Berater.