Skip to main content
European Commission logo
français français
CORDIS - Résultats de la recherche de l’UE
CORDIS

Metabolic Mechanical Materials: Adaptation, Learning & Interactivity

Description du projet

De nouveaux systèmes de matériaux mécano-chimiques interactifs à mémoire «effaçable»

La cellule est souvent comparée à une petite usine très complexe, qui décompose et construit des molécules par le biais de processus mécaniques et chimiques complexes. En exploitant ces processus cellulaires, le projet M3ALI, financé par l’UE, s’appuiera sur des matériaux polymères stimulés mécaniquement pour contrôler les réactions chimiques les plus simples jusqu’au niveau des réseaux de réactions chimiques. Un nouveau langage de traitement des signaux mécano-chimico-mécaniques prendra en charge une boucle de rétroaction dans laquelle la déformation mécanique est convertie en signaux chimiques, et les informations chimiques sont renvoyées au matériau mécanique. Il permettra une robotique molle adaptative et interactive plus naturelle et des systèmes interactifs cellule/matériau capables d’évolution conjointe.

Objectif

The central objective of M3ALI is to introduce concepts for adaptation, simplistic learning by training (physical exercise, not teaching), and interactivity in mechanically stimulated polymer materials by developing metabolic modules for mechanical memories (that can also be forgotten), for down-stream chemical processes and for active communication. The key experimental methodology is based on two classes of molecularly engineered mechanoprobes (MPs) that are capable of defined downstream reactivity up to the level of chemical reaction networks (CRNs). We build on our recent concept of DNA-based mechanofluorescent folding motifs in hydrogels, and extend it to cyclic disulfide MPs, and embed them into hydrogels and elastomers of controlled topology. DNA-based MPs will engage in DNA-based downstream reactions, while disulfide MPs will engage in complementary radical chemistry. The key concept is to code mechanical deformation into chemical signals that can be processed ultimately in CRNs to enable a behavioral evolution of the materials systems by installing memories, as well as by signal amplification, processing, translation and transport, and where the processed chemical information is fed back into the material to develop a full mechano-chemo-mechano signal processing language. We will break new ground in proof-of-concept applications in mechanical training and forgetting (physical exercise similar to muscle training), adaptive and interactive soft robotics, adaptive mechanical metamaterials, as well as interactive mechanical synchronization and interactive cell/material systems. Our approach to metabolic mechanical materials that use systems chemistry concepts to empower mechanical materials with the capacity to adapt, learn and interact profoundly contrast present research on responsive materials. In long term such concepts will provide the basis for more life-like materials systems capable of true adaptivity, interactivity and co-evolution in open systems.

Régime de financement

ERC-COG - Consolidator Grant

Institution d’accueil

JOHANNES GUTENBERG-UNIVERSITAT MAINZ
Contribution nette de l'UE
€ 1 998 750,00
Adresse
SAARSTRASSE 21
55122 Mainz
Allemagne

Voir sur la carte

Région
Rheinland-Pfalz Rheinhessen-Pfalz Mainz, Kreisfreie Stadt
Type d’activité
Higher or Secondary Education Establishments
Liens
Coût total
€ 1 998 750,00

Bénéficiaires (1)