Skip to main content
European Commission logo
español español
CORDIS - Resultados de investigaciones de la UE
CORDIS

Metabolic Mechanical Materials: Adaptation, Learning & Interactivity

Descripción del proyecto

Nuevos sistemas de materiales mecanoquímicos interactivos con memoria «borrable»

La célula suele compararse con una fábrica pequeña pero muy compleja, que descompone y crea moléculas a través de intrincados procesos mecánicos y químicos. En el proyecto M3ALI, financiado con fondos europeos, se capitalizarán estos procesos celulares a fin de emplear materiales poliméricos estimulados mecánicamente para controlar reacciones químicas, desde las más sencillas hasta el nivel de redes de reacciones químicas. Un nuevo lenguaje de procesamiento de señales mecánicas-químicas-mecánicas favorecerá un bucle de retroalimentación en el que la deformación mecánica se convierte en señales químicas y la información química se retroalimenta al material mecánico. Esto permitirá una robótica blanda adaptativa e interactiva más natural, así como sistemas interactivos célula/material capaces de coevolucionar.

Objetivo

The central objective of M3ALI is to introduce concepts for adaptation, simplistic learning by training (physical exercise, not teaching), and interactivity in mechanically stimulated polymer materials by developing metabolic modules for mechanical memories (that can also be forgotten), for down-stream chemical processes and for active communication. The key experimental methodology is based on two classes of molecularly engineered mechanoprobes (MPs) that are capable of defined downstream reactivity up to the level of chemical reaction networks (CRNs). We build on our recent concept of DNA-based mechanofluorescent folding motifs in hydrogels, and extend it to cyclic disulfide MPs, and embed them into hydrogels and elastomers of controlled topology. DNA-based MPs will engage in DNA-based downstream reactions, while disulfide MPs will engage in complementary radical chemistry. The key concept is to code mechanical deformation into chemical signals that can be processed ultimately in CRNs to enable a behavioral evolution of the materials systems by installing memories, as well as by signal amplification, processing, translation and transport, and where the processed chemical information is fed back into the material to develop a full mechano-chemo-mechano signal processing language. We will break new ground in proof-of-concept applications in mechanical training and forgetting (physical exercise similar to muscle training), adaptive and interactive soft robotics, adaptive mechanical metamaterials, as well as interactive mechanical synchronization and interactive cell/material systems. Our approach to metabolic mechanical materials that use systems chemistry concepts to empower mechanical materials with the capacity to adapt, learn and interact profoundly contrast present research on responsive materials. In long term such concepts will provide the basis for more life-like materials systems capable of true adaptivity, interactivity and co-evolution in open systems.

Régimen de financiación

ERC-COG - Consolidator Grant

Institución de acogida

JOHANNES GUTENBERG-UNIVERSITAT MAINZ
Aportación neta de la UEn
€ 1 998 750,00
Dirección
SAARSTRASSE 21
55122 Mainz
Alemania

Ver en el mapa

Región
Rheinland-Pfalz Rheinhessen-Pfalz Mainz, Kreisfreie Stadt
Tipo de actividad
Higher or Secondary Education Establishments
Enlaces
Coste total
€ 1 998 750,00

Beneficiarios (1)