Periodic Reporting for period 1 - FORWARD (Causes and consequences of forest reorganization: Towards understanding forest change)
Berichtszeitraum: 2021-10-01 bis 2023-03-31
– the development and publication of a conceptual framework of post-disturbance forest reorganization, setting the agenda and frame for the analyses conducted within the project (WP0);
– the setup of a suite of experiments to test interactive abiotic and biotic drivers of forest reorganization in situ (Berchtesgaden National Park) as well as in walk-in climate chambers (WP1);
– work towards the next-generation forest landscape model iLand 2.0 with focus on the implementation of forest microclimate, forest floor vegetation dynamics, and permafrost in the iLand simulation framework (WP2);
– data harmonization and model evaluation across the three FORWARD study sites, enabling consistent cross-site analyses of future trajectories of forest reorganization (WP3);
– the analysis of reorganization impacts with a specific focus on economic effects of disturbance and resilience (WP4); and
– the assessment of global hotspots of climate risks in forest ecosystems (WP5)
Overall, the FORWARD team has published 14 papers in peer-reviewed journals in the first 18 months of the project, including works in Science, PNAS, and Global Change Biology.
- the presentation of an operational framework to assess and quantify forest reorganization (https://doi.org/10.1073/pnas.2202190119);
- important insights on novel forest disturbances, e.g. the finding that forest fires could become more important also in parts of Europe not currently affected by fires, such as Central Europe (https://doi.org/10.1111/gcb.16547);
- a better understanding of potential future forest change in Central Europe, including the insight that climate-mediated changes in the forest disturbance regimes might be more important for future forest trajectories than the direct effects of warming (https://doi.org/10.1111/gcb.16133);
- an assessment of how processes important for simulating forest reorganization, such as tree mortality and regeneration, are represented in models (https://doi.org/10.1111/1365-2745.13989); and
- the identification of global climate risks to forests (https://doi.org/10.1126/science.abp9723).
Until the end of the project we expect further progress from
- experiments on abiotic and biotic drivers of forest reorganization;
- the completion and application of a next-generation forest landscape model towards questions of forest reorganization;
- a comparison of reorganization patterns and processes across landscapes with different disturbance history and disturbance response mechanisms;
- the evaluation of specific forest management strategies in the context of changing forest disturbance regimes; and
- analyses of reorganization impacts on biodiversity and ecosystem service supply.