Project description
Dissecting the mechanobiology of the Achilles tendon
The Achilles tendon is the thickest tendon in the body and connects the calf muscles to the heel bone. In 50 % of the cases, injury or rupture of this tendon does not heal efficiently and may lead to problems in walking and running. The key objective of the EU-funded TENDON_MECHBIO project is to understand how the Achilles tendon responds to mechanical load. Researchers will combine experimental data and an in silico approach to generate a model that can predict the biomechanical behaviour of the Achilles tendon under different circumstances. The TENDON_MECHBIO-generated platform will serve as a tool for the design of solutions for managing tendon injuries.
Objective
Achilles tendon ruptures are common and costly, and more than 50% heal unsuccessfully. Tendons respond to mechanical load over time and loading is fundamental for good mechanical performance. However, the regulatory mechanisms are still largely unknown. The main objective of this proposal is to clarify how intact and ruptured healing Achilles tendons are responding to mechanical load. The hypothesis is that the underlying mechanisms can be elucidated through an advanced multimodal approach that combines novel experimental and numerical models across several length scales to clarify the distinct adaptive response of elastic and viscoelastic mechanical behaviour. The proposal combines well-controlled in vivo animal experiments that are uniquely characterized (in situ) to develop and validate novel adaptive computational (in silico) models that can comprehensively predict the spatial and temporal tissue distributions and biomechanical behavior of healthy intact and ruptured healing tendons. On each length scale, experimental mechanical tests are carried out concurrently with 3D/2D high resolution imaging/scattering (in situ), to clarify how the inhomogeneous meso-, micro- and nanostructures behave under loading, in a setup planned to deliver optimal data for development and validation of computational models.
The interdisciplinary project will deliver high-impact science where the multimodal approach on several length scales could establish new paradigms in tendon biomechanics and mechanobiology. Further, it will lift bioengineering to new levels by unravelling the link between load-controlled molecular mechanisms and viscoelastic mechanical response. It will deliver a novel validated computational framework that the research community may use to propose enhanced solutions for managing tendon injuries. As such, it approaches a well-defined clinical problem from an engineering view, where the PI’s well-received published and ongoing work is the foundation for the idea.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
ERC-COG - Consolidator Grant
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2020-COG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
22100 Lund
Sweden
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.