Project description
Nanocarriers for RNA delivery in the lung
RNA therapeutics have the potential to revolutionise medicine, but efficient nanotechnology-based strategies are required for their delivery inside cells. The EU-funded RESPIRNA project proposes to repurpose the lung surfactant protein B (SP-B), a key component of pulmonary surfactant, for intracellular RNA delivery. Researchers will investigate the mechanism of action of SP-B and optimise its utilisation for RNA therapeutics. Deliverables will aid the rational design of the next generation of nanocarrier-based RNA formulations capable of crossing cell membranes. Long-term, this will address the unmet medical need for the treatment of many lung diseases.
Objective
RESPIRNA aims to repurpose lung surfactant protein B (SP-B) to promote the cytosolic delivery of RNA in lung-related target cells. RNA therapeutics, including small interfering RNA (siRNA) and messenger RNA (mRNA), are poised to revolutionize medicine. However, despite a clear unmet medical need in many lung diseases, no RNA formulations are currently available for pulmonary administration.
To unlock the full therapeutic potential of RNA drugs, safe and efficient nanomedicines that can deliver them inside target cells are required. SP-B is a key component of pulmonary surfactant, essential for mammalian breathing. In contrast to the general belief that pulmonary surfactant constitutes an important extracellular barrier for macromolecular drug delivery in the lung, I recently discovered a previously unknown property of SP-B in its ability to promote transmembrane delivery of RNA inside cells. Here, I aim to repurpose this biomaterial for intracellular RNA delivery, (1) by exploring SP-B's cellular mode-of-action towards improved cytosolic delivery of RNA, (2) by designing multifunctional and multicomponent lung surfactant nanocarriers and (3) by applying these nanocarriers for RNA delivery in the lung, using models of obstructive lung disease.
Gaining mechanistic insight into how an endogenous membrane-active protein like SP-B can mediate cytosolic RNA delivery will allow me to maximize SP-B mediated delivery of promising RNA therapeutics and will fuel rational design of lung surfactant inspired nanocarriers for inhalation therapy. Beyond RESPIRNA, I anticipate that such nanocarriers will be more generically applicable for a wider variety of membrane-impermeable drugs, nanomedicines and pathologies.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- medical and health sciences clinical medicine oncology lung cancer
- natural sciences biological sciences biochemistry biomolecules proteins
- medical and health sciences medical biotechnology nanomedicine
- medical and health sciences basic medicine pathology
- natural sciences biological sciences genetics RNA
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
ERC-COG - Consolidator Grant
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2020-COG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
9000 GENT
Belgium
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.