Project description
A closer (mathematical) look at physical systems of large size
When it comes to the physical world and our particle universe, most properties and behaviours we see on the bulk level are the result of the interactions of many individual "units," whether particles like electrons or more complex multi-particle structures such as protons and neutrons. Statistical physics relying on probability theory and statistics helps us solve physical problems arising from the interactions of these large numbers of units. The field of mathematical statistical physics has progressed tremendously in recent years, yet open questions remain. The EU-funded Transitions project is now addressing several important themes at the intersection of statistical physics and probability theory.
Objective
Mathematical statistical physics has seen spectacular progress in recent years. Existing problems which were previously unattainable were solved, opening a way to approach some of the classical open questions in the field. The proposed research focuses on phenomena of universality, phase transitions and the effect of disorder in physical systems of large size, identifying several fundamental questions at the interface of Statistical Physics and Probability Theory.
One circle of questions concerns the fluctuation behavior of random surfaces, where the PI recently resolved the 1975 delocalization conjecture of Brascamp-Lieb-Lebowitz. The PI proposes to establish some of the long-standing universality conjectures for random surfaces, including their scaling limit, localization properties and behavior of integer-valued surfaces.
A second circle of questions regards specific two-dimensional models on which there are exact predictions in the physics literature concerning their critical properties which remain elusive from the mathematical standpoint. The PI proposes several ways to advance the state of the art. The PI further proposes to investigate the dependence of two-dimensional phenomena on the underlying planar graph structure, in the spirit of conjectures of Benjamini to which the PI recently supplied significant support.
A third circle of questions revolves around random-field models. Imry-Ma predicted in 1975, and Aizenman-Wehr proved in 1989, that an arbitrarily weak random field can eliminate the magnetization phase transition of systems in low dimensions including the spin O(n) models. Quantitative aspects of this phenomenon remain unclear, in the mathematical and physical literature. Following recent substantial progress of the PI in the Ising model case, a quantitative analysis of the phenomenon for the classical models is proposed.
Further emphasis is placed on the problem of finding new methods for proving the breaking of continuous symmetries.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
This project's classification has been validated by the project's team.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
This project's classification has been validated by the project's team.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
ERC-COG - Consolidator Grant
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2020-COG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
69978 Tel Aviv
Israel
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.