Skip to main content
European Commission logo
español español
CORDIS - Resultados de investigaciones de la UE
CORDIS
CORDIS Web 30th anniversary CORDIS Web 30th anniversary

Tensor-bAsed Machine learning towards genEral moDels of affect

Descripción del proyecto

Mejora de la comprensión de la inteligencia emocional

La inteligencia emocional es la capacidad de comprender y gestionar las emociones propias y de los que nos rodean. El proyecto financiado con fondos europeos TAMED tiene por objeto crear nuevos métodos y algoritmos de aspectos perceptuales de la inteligencia emocional general, uno de los principales objetivos a largo plazo de la inteligencia artificial y la psicología artificial. TAMED es muy innovador, puesto que utiliza por primera vez modelos basados en tensores y de aprendizaje de preferencias para captar aspectos afectivos generales. Los métodos desarrollados a lo largo del proyecto ayudarán a investigar hasta qué punto son posibles los modelos afectivos sin contexto y consolidarán así la investigación en Europa y fuera de esta.

Objetivo

The main objective of the TAMED project is to devise new methods and algorithms for realising aspects of general emotional intelligence, one of the core long-term goals of artificial intelligence and artificial psychology. To move towards such an ambitious goal TAMED methods would be required to: a) derive accurate models from small-sized affect data corpora, b) eliminate the subjective biases inherent in affective ground truth, and c) limit overfitting effects of affect models given their context-specific nature. TAMED views general affect modelling from an ordinal perspective and interweaves uniquely novel tensor-based learning models with preference learning approaches. TAMED is highly innovative since it utilises, for the first time, tensor-based and preference (deep) learning models to capture general aspects of affect. Tensor models are characterised by high learning and generalization capacity, and are suitable across different learning paradigms, while preference learning can uniquely eliminate annotation biases and approximate more reliably the underlying ground truth of affect. TAMED methods will be used to investigate the degree to which context-free affect models are possible and general affect patterns can be captured across dissimilar tasks and users. The applicability of the derived models will be tested on the domain of digital games since they offer complex yet well-defined problems for exploring the capacities of general artificial intelligence. The aforementioned innovative aspects make TAMED highly interdisciplinary, with research activities spanning from affective computing and machine learning to digital game design and development. The fellowship will contribute to the researcher’s career development through the acquisition of advanced scientific and technical skills, as well as developing skills within academia and industry. The project will also serve to consolidate and extend the researcher's professional network within Europe and beyond.

Ámbito científico (EuroSciVoc)

CORDIS clasifica los proyectos con EuroSciVoc, una taxonomía plurilingüe de ámbitos científicos, mediante un proceso semiautomático basado en técnicas de procesamiento del lenguaje natural.

Para utilizar esta función, debe iniciar sesión o registrarse

Convocatoria de propuestas

H2020-WF-2018-2020

Consulte otros proyectos de esta convocatoria

Convocatoria de subcontratación

H2020-WF-02-2019

Régimen de financiación

MSCA-IF-EF-ST - Standard EF

Coordinador

UNIVERSITA TA MALTA
Aportación neta de la UEn
€ 160 049,28
Dirección
TAL OROQQ
MSD 2080 MSIDA
Malta

Ver en el mapa

Región
Malta Malta Malta
Tipo de actividad
Higher or Secondary Education Establishments
Enlaces
Coste total
€ 160 049,28