Skip to main content
Aller à la page d’accueil de la Commission européenne (s’ouvre dans une nouvelle fenêtre)
français français
CORDIS - Résultats de la recherche de l’UE
CORDIS

Tensor-bAsed Machine learning towards genEral moDels of affect

Description du projet

Améliorer la compréhension de l’intelligence émotionnelle

L’intelligence émotionnelle est la capacité de comprendre et de gérer vos propres émotions et celles des personnes qui vous entourent. Le projet TAMED, financé par l’UE, vise à créer de nouvelles méthodes et algorithmes pour reproduire certains aspects de l’intelligence émotionnelle générale, l’un des objectifs essentiels à long terme de l’intelligence et de la psychologie artificielles. Projet très innovant, TAMED utilise, pour la première fois, des modèles d’apprentissage basés sur les tenseurs et les préférences pour capturer les aspects généraux de l’affect. Les méthodes développées dans le cadre du projet contribueront à déterminer dans quelle mesure des modèles d’affect sans contexte sont possibles, consolidant la recherche en Europe et au-delà.

Objectif

The main objective of the TAMED project is to devise new methods and algorithms for realising aspects of general emotional intelligence, one of the core long-term goals of artificial intelligence and artificial psychology. To move towards such an ambitious goal TAMED methods would be required to: a) derive accurate models from small-sized affect data corpora, b) eliminate the subjective biases inherent in affective ground truth, and c) limit overfitting effects of affect models given their context-specific nature. TAMED views general affect modelling from an ordinal perspective and interweaves uniquely novel tensor-based learning models with preference learning approaches. TAMED is highly innovative since it utilises, for the first time, tensor-based and preference (deep) learning models to capture general aspects of affect. Tensor models are characterised by high learning and generalization capacity, and are suitable across different learning paradigms, while preference learning can uniquely eliminate annotation biases and approximate more reliably the underlying ground truth of affect. TAMED methods will be used to investigate the degree to which context-free affect models are possible and general affect patterns can be captured across dissimilar tasks and users. The applicability of the derived models will be tested on the domain of digital games since they offer complex yet well-defined problems for exploring the capacities of general artificial intelligence. The aforementioned innovative aspects make TAMED highly interdisciplinary, with research activities spanning from affective computing and machine learning to digital game design and development. The fellowship will contribute to the researcher’s career development through the acquisition of advanced scientific and technical skills, as well as developing skills within academia and industry. The project will also serve to consolidate and extend the researcher's professional network within Europe and beyond.

Champ scientifique (EuroSciVoc)

CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN. Voir: Le vocabulaire scientifique européen.

Vous devez vous identifier ou vous inscrire pour utiliser cette fonction

Programme(s)

Programmes de financement pluriannuels qui définissent les priorités de l’UE en matière de recherche et d’innovation.

Thème(s)

Les appels à propositions sont divisés en thèmes. Un thème définit un sujet ou un domaine spécifique dans le cadre duquel les candidats peuvent soumettre des propositions. La description d’un thème comprend sa portée spécifique et l’impact attendu du projet financé.

Régime de financement

Régime de financement (ou «type d’action») à l’intérieur d’un programme présentant des caractéristiques communes. Le régime de financement précise le champ d’application de ce qui est financé, le taux de remboursement, les critères d’évaluation spécifiques pour bénéficier du financement et les formes simplifiées de couverture des coûts, telles que les montants forfaitaires.

MSCA-IF-EF-ST - Standard EF

Voir tous les projets financés dans le cadre de ce programme de financement

Appel à propositions

Procédure par laquelle les candidats sont invités à soumettre des propositions de projet en vue de bénéficier d’un financement de l’UE.

(s’ouvre dans une nouvelle fenêtre) H2020-WF-2018-2020

Voir tous les projets financés au titre de cet appel

Coordinateur

UNIVERSITA TA MALTA
Contribution nette de l'UE

La contribution financière nette de l’UE est la somme d’argent que le participant reçoit, déduite de la contribution de l’UE versée à son tiers lié. Elle prend en compte la répartition de la contribution financière de l’UE entre les bénéficiaires directs du projet et d’autres types de participants, tels que les participants tiers.

€ 160 049,28
Coût total

Les coûts totaux encourus par l’organisation concernée pour participer au projet, y compris les coûts directs et indirects. Ce montant est un sous-ensemble du budget global du projet.

€ 160 049,28
Mon livret 0 0